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An r p-weighted local energy approach to global
existence for null form semilinear wave equations

Michael Facci, Alex McEntarrfer and Jason Metcalfe

(Communicated by Kenneth S. Berenhaut)

We revisit the proof of small-data global existence for semilinear wave equations
that satisfy a null condition. This new approach relies on a weighted local energy
estimate that is akin to those of Dafermos and Rodnianski. Using weighted
Sobolev estimates to obtain spatial decay and arguing in the spirit of the work of
Keel, Smith, and Sogge, we are able to obtain global existence while only relying
on translational and (spatial) rotational symmetries.

1. Introduction

We shall examine systems of semilinear wave equations in (1+3)-dimensions of
the form{

□u I
:= (∂2

t −1)u I
= Q I (∂u), (t, x) ∈ R+×R3, I = 1,2, . . . , M,

u I (0, ·) = f I, ∂t u I (0, ·) = g I.
(1-1)

Here ∂u = (∂t u, ∇u) is the space-time gradient, and each component Q I is a smooth
function that vanishes to second order at the origin. As we shall only consider small
data, the long-time behavior is dictated by the lowest-order terms, and, as such, we
will truncate Q to the quadratic level.

As the linear wave equation decays like t−(n−1)/2 in n-spatial dimensions and as
this factor is integrable at infinity when n ≥ 4, it has long been known that global
existence of solutions to (1-1) for sufficiently small initial data is guaranteed in these
dimensions. When n = 3, however, a logarithmic blow up is instead encountered,
and only almost global existence, which states that the lifespan of the solution
grows exponentially as the size of the initial data shrinks, is available generically;
see, e.g., [Sogge 2008].

MSC2020: 35L05, 35L71.
Keywords: semilinear wave equations, null condition, global existence, local energy estimate.
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2 MICHAEL FACCI, ALEX MCENTARRFER AND JASON METCALFE

When the nonlinearity is assumed to satisfy a null condition, it was discovered in
[Christodoulou 1986; Klainerman 1986] that sufficiently small initial data always
produce global solutions in three dimensions. In the current setting, assuming that
our quadratic nonlinearity is of the form

Q I (∂u) = Aαβ,I
J K ∂αu J ∂βuK,

the null condition requires that

Aαβ,I
J K ξαξβ = 0, when ξ 2

0 − ξ 2
1 − ξ 2

2 − ξ 2
3 = 0. (1-2)

Here we are using the summation convention with α, β running from 0 to 3 and the
common conventions that ∂0u = ∂t u, ∂j u = ∂x j u. We are also allowing repeated
capital indices to sum from 1 to M.

A common approach for establishing such long-time existence results relies
on the method of invariant vector fields and the Klainerman–Sobolev inequality
[Klainerman 1985]. Due to the unbounded normal component on the boundary, the
Lorentz boosts xk∂t + t∂k are inappropriate when studying such nonlinear equations,
say, exterior to a compact obstacle with Dirichlet boundary conditions. In response,
[Keel et al. 2002] developed a method of establishing long-time existence for
three-dimensional semilinear wave equations that only relies upon the generators
of translations and spatial rotations:

�i j = xi ∂j − x j ∂i , Z = (∂1, ∂2, ∂3, �23, �13, �12).

Here the authors depended on the integrated local energy estimate, which will be
introduced in Section 2, and a weighted Sobolev estimate [Klainerman 1986] that
provided decay in |x | rather than t but only requires the vector fields Z . This method
was adapted to the quasilinear setting in [Metcalfe and Sogge 2006] by exploring
local energy estimates for perturbations of the d’Alembertian. The desire for a
method that did not necessitate the use of the Lorentz boosts was also motivated by
wanting to understand multiple speed systems of wave equations and the equations
of elasticity; see, e.g., [Klainerman and Sideris 1996; Sideris 2000].

Here we shall explore small-data global existence for null-form wave equations.
Many approaches exist for establishing such global existence, see, e.g., [Klainer-
man 1986; Christodoulou 1986; Sideris and Tu 2001; Metcalfe and Sogge 2007;
Katayama and Kubo 2008; Lindblad et al. 2013]. Unlike many of the preceding
results, our method shall only rely on the time-independent vector fields Z .

The key to our argument is to replace the use of the local energy estimate with a
variant, specifically a type of r p-weighted local energy estimate of [Dafermos and
Rodnianski 2010]. See [Moschidis 2016] for some generalizations of this method.
This estimate has been applied in a number of nonlinear settings such as [Luk 2013;
Yang 2015a; 2015b; Keir 2018]. Typically it is used to derive decay in t . Such
decay is then used to control the integral within the energy inequality and thus
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provides long-time existence. We believe our approach to be more straightforward,
though those preceding results were all in much more complicated settings.

The r p-weighted local energy estimate only controls the “good” derivatives
̸∂ = (∂t + ∂r , ̸∇), where ̸∇ = ∇ − (x/r)∂r are the angular derivatives. These are
the directions that are tangent to the light cone and for which better decay is known.
The r p-weighted estimate is particularly well-suited to null form wave equations as
the algebraic cancellation condition (1-2) precisely guarantees that in each quadratic
term of Q(∂u) one of the two factors is a good derivative.

Our main result is:

Theorem 1.1. Suppose that f, g ∈ (C∞(R3))M. And let 0 < p < 1. Then, for any
ε > 0 sufficiently small, if

∥(1 + r)p/2 Z≤10 f ∥L2(R3) + ∥(1 + r)p/2 Z≤9g∥L2(R3) ≤ ε, (1-3)

then (1-1) with nonlinearity satisfying (1-2) has a unique global solution u ∈

C∞(R+ × R3).

Here, and throughout, we shall use the abbreviation Z≤N u =
∑

|α|≤N Zαu.
To keep the exposition as accessible as possible, we have only focused on

semilinear equations on Minkowski space. We expect that the argument can readily
be extended to, e.g., quasilinear equations and equations on exterior domains, and
these topics will be explored subsequently.

Our proof of Theorem 1.1 most resembles [Lindblad et al. 2013]. There an
alternate local energy estimate that relies upon t−r weights, which is from [Lindblad
and Rodnianski 2005; Alinhac 2001], was used. In order to achieve the decay in t−r ,
the authors called upon decay estimates of [Klainerman and Sideris 1996], but these
in turn required the use of the time-dependent vector fields. The current argument
is much more directly reminiscent of [Keel et al. 2002].

2. Integrated local energy estimates

The integrated local energy estimate first appeared in [Morawetz 1968]. Through
subsequent refinements, on R+× Rn, n ≥ 3, we know that

∥∂u∥
2
L∞

t L2
x
+ sup

R≥1
R−1

∥∂u∥
2
L2

t L2
x (R+×{⟨x⟩≈R})

+ sup
R≥1

R−3
∥u∥

2
L2

t L2
x (R+×{⟨x⟩≈R})

≲ ∥∂u(0, · )∥2
L2 +

∫ ∞

0

∫
|□u|(|∂u| + ⟨x⟩

−1
|u|) dx dt. (2-1)

The most robust proof of this estimate pairs the equation □u with a multiplier
of the form

C∂t u +
r

r +R
∂r u +

n−1
2

1
r +R

u

and follows from integration by parts; see, e.g., [Sterbenz 2005; Metcalfe and Sogge
2006]. Related estimates are known to hold for stationary, nontrapping perturbations
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and for sufficiently small nonstationary perturbations. See [Metcalfe et al. 2020]
for a more complete history and the most general results in the nontrapping setting.

Our first task will be to prove the following r p-weighted estimate, which first
appeared in [Dafermos and Rodnianski 2010].

Proposition 2.1. Suppose u ∈ C∞(R+ × R3) and that for every T there is an R so
that u(t, x) = 0 for t ∈ [0, T ] and |x | > R. Then, for 0 < p < 1,

∥r (p−1)/2
̸∂u∥

2
L2

t L2
x
+ ∥r (p−3)/2u∥

2
L2

t L2
x
+ sup

t
Ẽ[u](t)

≲ Ẽ[u](0) + ∥r (p+1)/2□u∥
2
L2

t L2
x
, (2-2)

where

Ẽ[u](t) =
1
2

∫
r p−2

|̸∂(ru(t, x))|2 dx +
p
2

∫
r p−2u2(t, x) dx .

The local energy estimate (2-1) has an ℓ∞-summation over the annuli, which we
may take to be dyadic, in the left side. In [Keel et al. 2002], the difference between
this and having ℓ2-summability accounts for a logarithm, which in turn corresponds
to the exponential within the notion of almost global existence. While restricted
only to the good directions, the above estimate has the desired ℓ2-summability, and
as such, it will yield global existence so long as the equation permits its application
on each term, which the null condition exactly provides.

Proof. For any 0 ≤ p ≤ 2, we first consider∫ T

0

∫
□u · r p

(
∂t u + ∂r u +

1
r

u
)

dx dt

=

∫ T

0

∫∫
r p(∂2

t − ∂2
r − ̸∇ · ̸∇)(ru)(∂t + ∂r )(ru) dσ dr dt.

Using integration by parts and the fact that [̸∇, ∂r ] = (1/r )̸∇, the right side is equal
to
1
2

∫ T

0

∫∫
r p(∂t − ∂r )[(∂t + ∂r )(ru)]2 dσ dr dt

+
1
2

∫ T

0

∫∫
r p(∂t + ∂r )|̸∇(ru)|2 dσ dr dt +

∫ T

0

∫∫
r p−1

|̸∇(ru)|2 dσ dr dt.

Further integrating by parts yields∫ T

0

∫
□u · r p

(
∂t u + ∂r u +

1
r

u
)

dx dt

=
1
2

∫∫
r p

{[(∂t + ∂r )(ru)]2
+ |̸∇(ru)|2} dσ dr

∣∣T
t=0

+
p
2

∫ T

0

∫∫
r p−1

[(∂t + ∂r )(ru)]2 dσ dr dt

+

(
1 −

p
2

)∫ T

0

∫∫
r p−1

|̸∇(ru)|2 dσ dr dt. (2-3)
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For simplicity, we now restrict to 0 ≤ p < 1. We then observe that

p
2

∫ T

0

∫∫
r p−1

[(∂t + ∂r )(ru)]2 dσ dr dt =
p
2

∫ T

0

∫
r p−1(∂t u + ∂r u)2 r2 dσ dr dt

+
p
2

∫ T

0

∫∫
r p(∂t + ∂r )u2 dσ dr dt

+
p
2

∫ T

0

∫∫
r p−1u2 dσ dr dt,

which upon a last integration by parts and reverting back to rectangular coordinates
gives

p
2

∫
r p−2u2 dx

∣∣T
t=0+

p
2

∫ T

0

∫
r p−1(∂t u+∂r u)2 dx dt+

p(1−p)

2

∫ T

0

∫
r p−3u2 dx dt.

Making this replacement in (2-3) and applying the Schwarz inequality gives

p
2

∥r (p−1)/2(∂t + ∂r )u∥
2
L2

t L2
x
+

2−p
2

∥r (p−1)/2 ̸∇u∥
2
L2

t L2
x

+
p(1−p)

2
∥r (p−3)/2u∥

2
L2

t L2
x
+ Ẽ[u](T )

≤ Ẽ[u](0)+∥r (p+1)/2□u∥L2
t L2

x

(
∥r (p−1)/2(∂t + ∂r )u∥L2

t L2
x
+∥r (p−3)/2u∥L2

t L2
x

)
.

Bootstrapping the last factor of the last term completes the proof. We moreover note
that the implicit constant is independent of T, and thus we may take the supremum
over all T to obtain (2-2). □

In the sequel, we shall require a version of (2-2) that permits the application of
the invariant vector fields, which is presented in the next proposition.

Proposition 2.2. Let 0 < p < 1 and fix any N ∈ N. Suppose u ∈ C∞(R+ ×R3) and
that, for every T, there is an R so that u(t, x) = 0 for t ∈ [0, T ] and |x | > R. Then,

∥Z≤N ∂u∥
2
L∞

t L2
x
+∥(1+r)(p−1)/2 Z≤N

̸∂u∥
2
L2

t L2
x
+∥(1+r)(p−3)/2 Z≤N u∥

2
L2

t L2
x

≲ ∥(1 + r)p/2 Z≤N ∂u(0, · )∥2
L2 + ∥(1 + r)(p+1)/2 Z≤N□u∥

2
L2

t L2
x
. (2-4)

Proof. We first note that∫ ∞

0

∫
|□u|(|∂u| + ⟨x⟩

−1
|u|) dx dt

≤ ∥(1 + r)(p+1)/2 □u∥L2
t L2

x

(
∥(1 + r)−(p+1)/2 ∂u∥L2

t L2
x
+ ∥(1 + r)−(p+3)/2u∥L2

t L2
x

)
,

and that

∥(1 + r)−(p+1)/2 ∂u∥L2
t L2

x
+ ∥(1 + r)−(p+3)/2u∥L2

t L2
x

≲ sup
j≥0

2− j/2
∥∂u∥L2

t L2
x (R+×{⟨x⟩≈2 j }) + sup

j≥0
2−3 j/2

∥u∥L2
t L2

x (R+×{⟨x⟩≈2 j }).
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Thus, by bootstrapping this factor into the left side of (2-1), we see from (2-1) that

∥∂u∥L∞
t L2

x
≲ ∥∂u(0, · )∥L2 + ∥(1 + r)(p+1)/2 □u∥L2

t L2
x
.

Since [□, Z ] = 0 and since [Z , ∂] ∈ span(∂), the bound for the first term in (2-4)
follows by replacing u by Z≤N u.

Since

[∂i , ∂t + ∂r ] =
1
r
̸∇i , [∂i , ̸∇j ] =

1
r

(
−δi j +

xi x j

r2

)
∂r −

1
r

x j

r
̸∇i ,

[�i j , ̸∇k] = δ jk ̸∇i − δik ̸∇j , [�i j , ∂t + ∂r ] = 0

and since |̸∇u| ≤ (1/r)|�u|, we have that |[Z , ̸∂ ]u| ≤ (1/r)|Zu|. Thus the re-
mainder of the proof follows upon replacing u by Z≤N u in (2-2). We may readily
replace r by 1+r in the L2

t L2
x -terms since the powers in the left are negative, while

powers in the right are positive. We also note that, due to a Hardy-type inequality,

Ẽ[u](t) ≲ ∥(1 + r)p/2∂u(t, · )∥2
L2 . □

3. Proof of Theorem 1.1

The decay that we require will be obtained from the following weighted Sobolev
estimate of [Klainerman 1986]. This estimate only provides decay in |x |, but
simultaneously it does not necessitate the use of any time-dependent vector fields.

Lemma 3.1. For h ∈ C∞(R3) and R ≥ 1,

∥h∥L∞({R/2<⟨x⟩<R}) ≲ R−1
∥Z≤2h∥L2({R/4<⟨x⟩<2R}). (3-1)

The bound (3-1) follows, after localizing appropriately, from applying Sobolev
estimates in the r - and ω-variables separately and comparing the volume element
dr dσ(ω) with that of R3 in spherical coordinates: r2 dr dσ(ω).

As mentioned earlier, the null condition (1-2) guarantees that at least one of the
two factors in each nonlinear term is a “good” derivative. In fact, using a product
rule argument, we have

|Z≤10 Q(∂u)| ≲ |Z≤5∂u||Z≤10
̸∂u| + |Z≤5

̸∂u||Z≤10∂u|. (3-2)

This is well known; we refer the reader to, e.g., [Lindblad et al. 2013, Lemma 2.3].
We will use an iteration to solve (1-1). We let u−1 ≡ 0 and let uk solve{

□uk = Q(∂uk−1),

uk(0, · ) = f, ∂t uk(0, · ) = g.

Boundedness: Our first step is to show an appropriate boundedness of this iteration.
To this end, we shall set

Mk =∥Z≤10∂uk∥L∞
t L2

x
+∥(1+r)(p−1)/2 Z≤10̸∂uk∥L2

t L2
x
+∥(1+r)(p−3)/2 Z≤10uk∥L2

t L2
x
.
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Due to (2-4) and (1-3), there is a constant C0 so that

M0 ≤ C0ε.

We shall argue inductively that for every k

Mk ≤ 2C0ε. (3-3)

To show (3-3), we use (2-4), which provides the bound

Mk ≤ C0ε + C∥(1 + r)(p+1)/2 Z≤10 Q(∂uk−1)∥L2
t L2

x
.

Applying (3-2) and (3-1) we obtain

∥(1 + r)(p+1)/2 Z≤10 Q(∂uk−1)∥L2
t L2

x

≲ ∥(1 + r)(p+1)/2
|Z≤5 ∂uk−1||Z≤10

̸∂uk−1|∥L2
t L2

x

+ ∥(1 + r)(p+1)/2
|Z≤5

̸∂uk−1||Z≤10 ∂uk−1|∥L2
t L2

x

≲ ∥Z≤7 ∂uk−1∥L∞
t L2

x
∥(1 + r)(p−1)/2 Z≤10

̸∂uk−1∥L2
t L2

x

+ ∥(1 + r)(p−1)/2 Z≤7
̸∂uk−1∥L2

t L2
x
∥Z≤10 ∂uk−1∥L∞

t L2
x
.

Thus, using the inductive hypothesis, it follows that

Mk ≤ C0ε + C(Mk−1)
2
≤ C0ε + C · C2

0ε2.

And if ε < 1/(C · C0), (3-3) results as desired.

Cauchy: We complete the proof by showing that the sequence is Cauchy in an
appropriate norm. By completeness, the sequence must converge and by standard
results the limiting function solves (1-1) as desired.

To this end, we set

Ak = ∥Z≤10 ∂(uk − uk−1)∥L∞
t L2

x
+ ∥(1 + r)(p−1)/2 Z≤10

̸∂(uk − uk−1)∥L2
t L2

x

+ ∥(1 + r)(p−3)/2 Z≤10(uk − uk−1)∥L2
t L2

x
.

We note that

Q I (∂uk−1) − Q I (∂uk−2)

= Aαβ,I
J K ∂α(u J

k−1 − u J
k−2)∂βuK

k−1 + Aαβ,I
J K ∂αu J

k−2∂β(uK
k−1 − uK

k−2).

Thus, as in (3-2), we obtain

|Z≤10 Q(∂uk−1) − Z≤10 Q(∂uk−2)|

≲ |Z≤5
̸∂(uk−1 − uk−2)|(|Z≤10 ∂uk−1| + |Z≤10 ∂uk−2|)

+ (|Z≤5 ∂uk−1| + |Z≤5 ∂uk−2|)|Z≤10
̸∂(uk−1 − uk−2)|

+ |Z≤5 ∂(uk−1 − uk−2)|(|Z≤10
̸∂uk−1| + |Z≤10

̸∂uk−2|)

+ (|Z≤5
̸∂uk−1| + |Z≤5

̸∂uk−2|)|Z≤10 ∂(uk−1 − uk−2)|. (3-4)
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As above, we apply (3-1) to the lower-order factor in each term to see that

∥(1 + r)(p+1)/2(Z≤10 Q(∂uk−1) − Z≤10 Q(∂uk−2))∥L2
t L2

x

≲ ∥(1 + r)(p−1)/2 Z≤7
̸∂(uk−1 − uk−2)∥L2

t L2
x

×
(
∥Z≤10 ∂uk−1∥L∞

t L2
x
+ ∥Z≤10 ∂uk−2∥L∞

t L2
x

)
+

(
∥Z≤7 ∂uk−1∥L∞

t L2
x
+ ∥Z≤7 ∂uk−2∥L∞

t L2
x

)
× ∥(1 + r)(p−1)/2 Z≤10

̸∂(uk−1 − uk−2)∥L2
t L2

x

+∥Z≤7 ∂(uk−1 − uk−2)∥L∞
t L2

x

×
(
∥(1 + r)(p−1)/2 Z≤10

̸∂uk−1∥L2
t L2

x
+ ∥(1 + r)(p−1)/2 Z≤10

̸∂uk−2∥L2
t L2

x

)
+

(
∥(1 + r)(p−1)/2 Z≤7

̸∂uk−1∥L2
t L2

x
+ ∥(1 + r)(p−1)/2 Z≤7

̸∂uk−2∥L2
t L2

x

)
× ∥Z≤10 ∂(uk−1 − uk−2)∥L∞

t L2
x
.

From (2-4) it then follows that

Ak ≤ C(Mk−1 + Mk−2)Ak−1 ≤ C · C0εAk−1.

So long as, say, ε < 1/(2C · C0), we obtain

Ak ≤
1
2 Ak−1 for all k,

which implies that the sequence is Cauchy and completes the proof.
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Cones and ping-pong in three dimensions
Gabriel Frieden, Félix Gélinas and Étienne Soucy

(Communicated by Jim Haglund)

We study the hypergeometric group in GL3(C) with parameters α =
( 1

4 , 1
2 , 3

4

)
and β = (0, 0, 0). We give a new proof that this group is isomorphic to the free
product Z/4Z ∗ Z/2Z by exhibiting a ping-pong table. Our table is determined
by a simplicial cone in R3, and we prove that this is the unique simplicial cone
(up to sign) for which our construction produces a valid ping-pong table.

1. Introduction

Beukers and Heckman [1989] defined a hypergeometric group to be a subgroup of
GLn(C) generated by three matrices R, T, U such that U−1T R = I, U and R have
no shared eigenvalues, and T − I is a rank-1 matrix. The name is due to the fact that
these groups arise as monodromy groups of hypergeometric differential equations.

One of the main results of [Beukers and Heckman 1989] says that the Zariski
closure of a primitive hypergeometric group is either a finite subgroup of GLn(C) or
one of the matrix groups SLn(C), SOn(C), Spn(C). If H is a subgroup of GLn(Z)

whose Zariski closure is G(C) (where G is a matrix group GLn, SLn, SOn, Spn ,
etc.), H is said to be arithmetic if it has finite index in G(Z), and thin otherwise.
Arithmetic subgroups of GLn(Z) have long been a central object of study in number
theory, but in recent years there has been increasing interest in thin subgroups; see
[Sarnak 2014].

The question of whether a given primitive hypergeometric group is arithmetic or
thin has been studied in [Chen, Yang and Yui 2008; Venkataramana 2014; Singh
and Venkataramana 2014; Fuchs, Meiri and Sarnak 2014; Brav and Thomas 2014;
Filip and Fougeron 2021] and is rather subtle. Fuchs, Meiri, and Sarnak [2014]
showed that several infinite families of hypergeometric groups with closure SOn(C)

(n odd) are thin. On the other hand, for hypergeometric groups with closure Spn(C),
one infinite family is known to be arithmetic [Venkataramana 2014], but the only
known thin examples are in Sp4(C) [Singh and Venkataramana 2014; Brav and
Thomas 2014; Filip and Fougeron 2021].
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In this paper, we are interested in a particular infinite family of primitive hyper-
geometric groups. For n ≥ 2, define Rn, Un, Tn ∈ GLn(C) by

Rn =



0 0 0 0 0 −1
1 0 0 · · · 0 0 −1
0 1 0 0 0 −1

...
. . .

...

0 0 0 0 0 −1
0 0 0 · · · 1 0 −1
0 0 0 0 1 −1


, Un =



0 0 0 0 0 ±1
1 0 0 · · · 0 0 ∓n
0 1 0 0 0 ±

( n
n−2

)
...

. . .
...

0 0 0 0 0
(n

3

)
0 0 0 · · · 1 0 −

(n
2

)
0 0 0 0 1 n


,

and Tn = Un R−1
n , where the signs in the last column of Un alternate. Let Hn be the

hypergeometric group generated by Rn, Un, Tn . The parameters of Hn are

α =

(
1

n + 1
,

2
n + 1

, . . . ,
n

n + 1

)
, β = (0, . . . , 0).

This means that the eigenvalues of Rn and Un are e2π i/(n+1), . . . , e2π in/(n+1) and
1, . . . , 1, respectively. It follows from the criterion in [Beukers and Heckman 1989]
that Hn has Zariski closure Spn(C) if n is even and SOn(C) if n is odd.1 The
group Hn arises in algebraic geometry as the monodromy group of a well-studied
family of degree-n hypersurfaces in Pn−1 known as the Dwork family; see, e.g.,
[Katz 2009].

The group Hn is known to be arithmetic when n = 2, 3 (see [Fuchs, Meiri and
Sarnak 2014]) and was shown in [Brav and Thomas 2014] to be thin when n = 4.
According to [Sarnak 2014], it “seems likely” that Hn is thin for all even n ≥ 4.
If this is true, it would provide the first examples of thin subgroups of Spn(C)

for n ≥ 6.
To show that H4 is thin, Brav and Thomas used the ping-pong lemma to prove

that H4 is isomorphic to the free product Z/5Z ∗ Z. The following conjecture
generalizes this result and would imply that Hn is thin for n ≥ 4.

Conjecture 1.1. If n ≥ 2, then

Hn = ⟨Rn, Tn⟩ = ⟨Rn⟩ ∗ ⟨Tn⟩ =

{
Z/(n + 1)Z ∗ Z if n is even,

Z/(n + 1)Z ∗ Z/2Z if n is odd.

This paper undertakes a detailed study of Conjecture 1.1 in the case n = 3. In
Section 2, we use the ping-pong lemma to give an elementary proof that H3 ∼=

Z/4Z ∗ Z/2Z. To apply the ping-pong lemma, one must define a “ping-pong table”
in a set on which the group acts. In our case, we consider the natural action of

1Note, for odd n, the group Hn = H2k+1 preserves a symmetric bilinear form of signature (k+1, k).
By contrast, [Fuchs, Meiri and Sarnak 2014] studies the case of Lorentzian signature (2k, 1).
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3 × 3 matrices on R3, and our ping-pong table is determined by a simplicial cone C
in R3. We prove in Section 3 that C is (up to sign) the only simplicial cone which
gives rise to a “valid” ping-pong table via our construction.

In Section 4, we use a two-dimensional projection to illustrate the main ideas
of the previous sections. Finally, in Section 5, we compare our ping-pong table
in the three-dimensional case with the (essentially unique) ping-pong table in the
two-dimensional case, and with the more complicated ping-pong table of Brav and
Thomas in the four-dimensional case. We hope that the juxtaposition of these three
examples will inspire future work on Conjecture 1.1 in higher dimensions.

Remark 1.2. The n = 2 and n = 3 cases of Conjecture 1.1 can be obtained from
classical results of [Schwarz 1873; Klein 1933; Clausen 1828]. Indeed, Schwarz
and Klein determined the structure of a large class of hypergeometric groups in
GL2 (the so-called Schwarz triangle groups), one of which is H2. A result of
Clausen implies that H3 is the monodromy group of the symmetric square of
one of the hypergeometric differential equations covered by the work of Schwarz
and Klein (namely, the equation with parameters α =

( 1
8 , 3

8

)
and β = (0, 0)). It

follows that H3 is isomorphic to the Schwarz triangle group corresponding to these
parameters. We refer the reader to [Heckman 2015, §2.2, 3.2] for a nice account
of this story.

2. A three-dimensional ping-pong table

2A. Cones. Given vectors v1, . . . , vk ∈ Rn , define the open cone C generated by
v1, . . . , vk to be the set of strictly positive linear combinations of the vi . That is,

C = {a1v1 + · · · + akvk | ai ∈ R>0}.

We will sometimes write C = cone(v1, . . . , vk). Note that C is unchanged if one of
the generators vi is replaced by a positive scalar multiple λvi , λ > 0. The cone C
is said to be simplicial if the generators v1, . . . , vk are linearly independent.

For a subset S ⊆ Rn, we write S for the closure of S (in the Euclidean topology).
If C = cone(v1, . . . , vk), then

C = {a1v1 + · · · + akvk | ai ∈ R≥0}.

We call C the closed cone generated by v1, . . . , vk .
A subset S ⊆ Rn is convex if, for any two points x, y ∈ S, the line segment

{λx + (1 − λ)y | λ ∈ [0, 1]}

connecting x and y is contained in S. It is easy to verify that cones (both open and
closed) are convex.

2B. Free products and the ping-pong lemma. Let G1, . . . , Gd be subgroups of
a group G. A word (in the elements of the G j ) is a finite sequence (x1, . . . , xn),
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such that each xi is an element of at least one of the G j . Each word gives rise to
an element of G by multiplication; that is, (x1, . . . , xn) gives rise to the element
g = x1 · · · xn ∈ G. In this case, we say that (x1, . . . , xn) is an expression for g,
or that g can be expressed as the word (x1, . . . , xn). The group generated by the
subgroups G j , denoted by ⟨G1, . . . , Gd⟩, is the subgroup of G consisting of all
elements that can be expressed as words in the elements of the G j . The subgroups G j

are said to generate G if G = ⟨G1, . . . , Gd⟩.
If G1, . . . , Gd generate G, there are in general many expressions for each element

of G as a word in the elements of the G j . We say that a word (x1, . . . , xn) is
reduced if none of the xi is the identity element, and, for i = 1, . . . , n − 1, the
elements xi and xi+1 are not both contained in a single G j . The idea is that identity
elements can be removed from a word without changing the resulting element of G,
and if xi , xi+1 ∈ G j , these two elements can be replaced by the single element
xi xi+1 ∈ G j . By convention, the empty word gives rise to the identity element of G,
and is considered to be reduced.

Definition 2.1. Let G1, . . . , Gd be subgroups of a group G. The group G is the
free product of the G j if each g ∈ G has a unique reduced expression in the elements
of the G j . In this case, one writes

G = G1 ∗ · · · ∗ Gd .

We encourage the reader to verify that if G is the free product of G1, . . . , Gd ,
then Gi ∩ G j = {1} for i ̸= j . It may also be instructive to find a counterexample
to the converse of this statement.

The following result, which is known as the ping-pong lemma, is a standard tool
for proving that two subgroups of a larger group generate a free product.

Lemma 2.2 [Lyndon and Schupp 1977]. Let G, H be two nontrivial subgroups of a
group K such that at least one of G and H has more than two elements. Suppose K
acts on a set S and there are two nonempty subsets X, Y ⊂ S satisfying the following
properties:

(1) X ∩ Y = ∅.

(2) If g ∈ G\{1} and x ∈ X, then gx ∈ Y.

(3) If h ∈ H\{1} and y ∈ Y, then hy ∈ X.

Then the subgroup of K generated by G and H is a free product; that is, ⟨G, H⟩ =

G ∗ H.

We will refer to the sets X and Y as a valid ping-pong table (for G and H ) if
they satisfy the hypotheses of the ping-pong lemma.
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2C. A ping-pong table in R3. We now consider the three-dimensional case of
Conjecture 1.1. Writing R = R3, U = U3, and T = T3, we have

R =

0 0 −1
1 0 −1
0 1 −1

 , U =

0 0 1
1 0 −3
0 1 3

 , T =

−1 0 0
2 1 0

−4 0 1

 .

Note that R4
= T 2

= I.

Theorem 2.3. The subgroup of GL3(R) generated by R and T is the free product
of ⟨R⟩ and ⟨T ⟩; that is,

⟨R, T ⟩ = Z/4Z ∗ Z/2Z.

Proof. The group GL3(R) acts on R3 by matrix multiplication. We will find disjoint
subsets X, Y ⊂ R3 such that all elements of X are sent to Y by R, R2, and R3,
and all elements of Y are sent to X by T, which will allow us to conclude that
⟨R, T ⟩ ∼= ⟨R⟩ ∗ ⟨T ⟩ by the ping-pong lemma.

Let C be the open cone generated by the vectors

u = (1, −2, 1), v = (1, 0, 3), w = (0, −1, 1),

that is, C = {au + bv + cw | a, b, c ∈ R>0}. Define

X = C ∪ −C, Y = R X ∪ R2 X ∪ R3 X.

It is immediately clear from this definition that each nonidentity element of ⟨R⟩

maps X into Y, so hypothesis (2) of the ping-pong lemma is satisfied.
Now suppose there is a point p = au + bv + cw ∈ X ∩ Y. Since p ∈ X, the

coefficients a, b, c are all nonzero and of the same sign. Since p ∈ Y, there exists a
point q = xu + yv + zw ∈ X (so again x, y, z are nonzero and of the same sign)
such that R, R2 or R3 maps q to p. Explicitly, we have

q = (x+y, −2x−z, x+3y+z),

Rq = (−x−3y−z, −2y−z, −3x−3y−2z),

R2q = (3x+3y+2z, 2x+z, 3x+y+z),

R3q = (−3x−y−z, 2y+z, −x−y),

p = (a+b, −2a−c, a+3b+c).

This gives us three systems p = Ri q which solve to

p = Rq =⇒ a = −y, b = −x − 2y − z, c = 4y + z,

p = R2q =⇒ a = x + 2y + z, b = 2x + y + z, c = −4x − 4y − 3z,

p = R3q =⇒ a = −2x − y − z, b = −x, c = 4x + z.
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Remembering that the triples (x, y, z) and (a, b, c) must be nonzero and either all
positive or all negative, we obtain a contradiction in each case:

• In the first case, if x, y, z are positive, then a = −y is negative, but c = 4y + z
is positive, and vice versa in the negative case.

• In the second case, again a = x + 2y + z and c = −4x − 4y − 3z cannot have
the same sign if x, y, z have the same sign.

• The same goes in the third case for a = −2x − y − z and c = 4x + z.

These contradictions prove that X and Y are indeed disjoint.
We will now verify that T sends Y into X using a similar argument. As before,

let q = xu + yv + zw be a point in X. If we apply T to Rq, R2q, R3q, we get

T Rq = (x + 3y + z, −2x − 8y − 3z, x + 9y + 2z),

T R2q = (−3x − 3y − 2z, 8x + 6y + 5z, −9x − 11y − 7z),

T R3q = (3x + y + z, −6x − z, 11x + 3y + 4z).

This time solving the systems p = T Ri q (where p = au + bv + cw) nets us

p = T Rq =⇒ a = x + 2y + z, b = y, c = 4y + z,

p = T R2q =⇒ a = −2x − y − z, b = −x − 2y − z, c = −4x − 4y − 3z,

p = T R3q =⇒ a = x, b = 2x + y + z, c = 4x + z.

In this case we see that the signs of a, b, c all properly match, which confirms that
T does send Y into X, completing the proof. □

2D. Matrix logarithms. At this point, the reader may be wondering how we arrived
at the definition of the cone C . The explanation requires an examination of the
linear maps T R and T R−1, and their logarithms. In addition to motivating the
choice of generators u, v, and w, the formulas derived below play an essential role
in the proof of the uniqueness of C in the next section.

The matrix U = T R has Jordan form1 1 0
0 1 1
0 0 1

 .

This means that 1 is the only eigenvalue of T R, and the corresponding eigenspace
is one-dimensional. The vector u = (1, −2, 1) spans this eigenspace. The matrix

R(T R)−1 R−1
= T R−1

has the same Jordan form as T R, and its one-dimensional eigenspace is spanned by
v = (1, 0, 3).
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By the hypotheses of the ping-pong lemma, any positive integer power of the
linear transformations T R and T R−1 must map X to itself. To understand the
powers of these matrices, we use the Taylor expansions of log and exp, which allow
us to define

(T R)t
= exp(t log(T R)) and (T R−1)t

= exp(t log(T R−1))

for all t ∈ R. For T R, we compute

log(T R) = (T R − I ) −
1
2(T R − I )2

+
1
3(T R − I )3

− · · ·

=

−1 0 1
1 −1 −3
0 1 2

 −
1
2

 1 1 1
−2 −2 −2

1 1 1

 + 0 − · · · =

−
3
2 −

1
2

1
2

2 0 −2
−

1
2

1
2

3
2

 ,

and then

(T R)t
= exp(t log(T R)) = I + t log(T R) +

t2

2!
log(T R)2

+ · · ·

=

1 0 0
0 1 0
0 0 1

 + t

−
3
2 −

1
2

1
2

2 0 −2
−

1
2

1
2

3
2

 + t2

 1
2

1
2

1
2

−1 −1 −1
1
2

1
2

1
2

 .

(2-1)

Similarly, we compute

(T R−1)t
=

1 0 0
0 1 0
0 0 1

 + t

−
3
2 −

1
2

1
2

−3 1 1
−

3
2 −

5
2

1
2

 + t2

 3
2 −

1
2 −

1
2

0 0 0
9
2 −

3
2 −

3
2

 . (2-2)

Let P = log(T R) and Q = log(T R−1) (these are the coefficients of t in (2-1) and
(2-2), respectively). As the reader may easily verify, both P and Q have rank 2, and
their column spaces intersect in the line spanned by w = (0, −1, 1). It is perhaps
not clear why this intersection should be useful in defining a ping-pong table. In
Section 4B, we consider a two-dimensional projection that clearly illustrates the
significance of this intersection.

3. Uniqueness of the cone C

Let C ′ be the open cone generated by three linearly independent vectors u′, v′, w′
∈R3,

and define
X = C ′

∪ −C ′, Y = R X ∪ R2 X ∪ R3 X.

The goal of this section is to prove the following uniqueness theorem.

Theorem 3.1. If X and Y form a valid ping-pong table for ⟨R⟩ and ⟨T ⟩, then
C ′

= C or C ′
= −C , where C = cone(u, v, w) is the cone defined in the previous

section.
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The proof consists of two steps, the first of which is carried out in the following:

Lemma 3.2. Suppose X and Y form a valid ping-pong table for ⟨R⟩ and ⟨T ⟩.

(a) Let M = (T R j )t for fixed j ∈ {1, 2, 3} and t ∈ Z>0. Either

M(C ′) ⊆ C ′ or M(C ′) ⊆ −C ′.

(b) The lines spanned by u and v are contained in X.

(c) Two of the generators of C ′ are u and v (or −u and −v).

Proof. The hypotheses of the ping-pong lemma imply that M maps X into X. Since
linear transformations are continuous, this implies that M maps X into X. Suppose
there are nonzero vectors q1, q2 ∈ C ′ such that M(q1)∈ C ′ and M(q2)∈−C ′. Linear
transformations map line segments to line segments, so the convexity of C ′ implies
that the line segment from M(q1) to M(q2) is contained in X = C ′

∪−C ′. This can
only happen if the line segment connecting M(q1) and M(q2) passes through the
origin, that is, if M(q1)=−λM(q2) for some λ>0. Since M is invertible, this would
imply that q1 = −λq2, so q1, q2 ∈ C ′

∩−C ′
= {0}, a contradiction. This proves (a).

To prove part (b), we will show that for any nonzero vector q = (x, y, z) ∈ R3,
the vectors (T R)t(q) approach the line generated by u as t approaches infinity, and
the vectors (T R−1)t(q) approach the line generated by v. By (2-1), we have

(T R)t(q) =


1
2(x + y + z)t2

+
1
2(−3x − y + z)t + x

−(x + y + z)t2
+ 2(x − z)t + y

1
2(x + y + z)t2

+
1
2(−x + y + 3z)t + z

 . (3-1)

For a nonzero vector a, let â denote the normalization of a (i.e., the vector a divided
by its Euclidean norm). Using the fact that limt→∞

̂(T R)t(q) depends only on the
coefficients of the highest power of t appearing in (T R)t(q), we find that

lim
t→∞

∧

(T R)t(q) =



x+y+z
|x+y+z|

û if x + y + z ̸= 0,

z−x
|z−x |

û if x + y + z = 0 and x ̸= z,

x
|x |

û if x + y + z = 0 and x = z.

(3-2)

In all cases, the normalization of (T R)t(q) approaches ±û, one of the two unit
eigenvectors of T R. Similarly, using (2-2), we find that

lim
t→∞

∧

(T R−1)t(q) =



3x−y−z
|3x−y−z|

v̂ if 3x − y − z ̸= 0,

−y
|y|

v̂ if 3x − y − z = 0 and y ̸= 0,

x
|x |

v̂ if 3x − y − z = 0 and y = 0,

(3-3)
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so in all cases the normalization of (T R−1)t(q) approaches ±v̂, one of the two unit
eigenvectors of T R−1.

If q ∈ X, then as observed in the proof of part (a), (T R)t(q) and (T R−1)t(q)

must be in X for any positive integer t . Thus, since X is closed under scalar
multiplication (and nonempty), the previous calculations tell us that each point on
the lines spanned by u and v is a limit point of a sequence of points in X, so these
lines are in the closure of X. This proves (b).

It remains to prove (c). By part (b), we may assume that u is contained in C ′

(possibly after replacing C ′ with −C ′). Suppose that u is not a generator of C ′.
This means that u is contained in the interior of C ′, or in the interior of a face of C ′.
In either case, we can find a vector q = (x, y, z) which is not a scalar multiple of
u such that the line segment

{u + λq | |λ| ≤ ϵ}

is contained in C ′ for sufficiently small ϵ > 0. All points (a, b, c) which satisfy
both a + b + c = 0 and c − a = 0 are on the line spanned by u = (1, −2, 1), so we
must have x + y + z ̸= 0 or z − x ̸= 0. We may assume that x + y + z > 0, or that
x + y + z = 0 and z − x > 0. By (3-2), the sequence (T R)t(u +λq) approaches the
ray generated by u if λ ≥ 0 and the ray generated by −u if λ < 0. This contradicts
part (a).

A similar argument using (3-3) shows that v must be a generator of C ′ or −C ′.
To see that v must in fact be a generator of C ′, note that (T R)t(u) = u for all t ,
and (T R)t(v) = (T R)t(1, 0, 3) approaches the ray generated by u by (3-2). Now
part (a) guarantees that v ̸∈ −C ′. □

Remark 3.3. The proof of part (b) works for any valid ping-pong table in which X
is closed under scalar multiplication.

Proof of Theorem 3.1. By Lemma 3.2(c), we may assume (possibly after replacing C ′

with −C ′) that two of the generators of C ′ are u and v. Suppose C ′
= cone(u, v, w′),

where

w′
= λu + µv + ηw =

 λ + µ

−2λ − η

λ + 3µ + η


for some λ, µ, η ∈ R. Since u, v, w′ are assumed to be linearly independent, we
must have η ̸= 0. We first show that η > 0.

Applying (3-1) to v = (1, 0, 3), we obtain

(T R)t(v) =

 2t2
+ 1

−4t2
− 4t

2t2
+ 4t + 3

 .
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Solving a system of linear equations, we find that (T R)t(v) = au +bv+cw′, where

a = 2t2
−

4λ

η
t, b = 1 −

4µ

η
t, c =

4
η

t.

Since v ∈ X, the hypotheses of the ping-pong lemma require that (T R)t(v) be in X
for all t ∈ Z>0. This means that, for such t , we must have a, b, c ≥ 0 or a, b, c ≤ 0.
For large t , we can see that a is positive and c has the same sign as η. This shows
that η must be positive, as claimed.

Scaling w′ by a positive constant does not change C ′, so we may assume that
w′

= λu+µv+w. We will now show that T R(X) ̸⊆ X if µ ̸= 0 and T R−1(X) ̸⊆ X
if λ ̸= 0. Suppose x, y, z > 0, so that q = xu + yv + zw′ is in C ′. Solving a system
of linear equations, we find that T R(q) = au + bv + cw′, where

a = x + (2 − 4λ)y + (1 + 2µ − 4λµ)z,

b = (1 − 4µ)y − 4µ2z,

c = 4y + (1 + 4µ)z.

The crucial feature of these formulas is the presence of µ2 in the equation for b.
This means that if µ ̸= 0, then by choosing z sufficiently large, we can make b
negative. But for any fixed choice of z, we can make a positive by choosing x
sufficiently large. This shows that there is a choice of x, y, z > 0 such that a and b
do not have the same sign, contradicting the assumption that T R maps X to itself.
We conclude that µ = 0.

Next, we compute T R−1(q) = a′u + b′v + c′w′, where

a′
= (1 − 4λ)x − 4λ2z,

b′
= y + (2 − 4µ)x + (1 + 2λ − 4λµ)z,

c′
= 4x + (1 + 4λ)z.

If λ ̸= 0, we can make a′ negative by choosing z sufficiently large, and then we can
make b′ positive by choosing y sufficiently large. This contradicts the assumption
that T R−1 maps X to itself, so we must have λ = 0. We conclude that w′ is a
positive scalar multiple of w. □

4. Two-dimensional projection

4A. Definition of the projection. In order to better understand the algebraic argu-
ments in the previous sections, it is useful to project from R3 to a plane, where we
can more easily visualize what is going on. Given a linear functional φ : R3

→ R,
we can send a vector s ∈ R3 to s/φ(s), provided φ(s) ̸= 0. Since φ is linear,
φ(s/φ(s))=φ(s)/φ(s)= 1. Thus, the map ρ : s 7→ s/φ(s) amounts to projecting s
onto the plane P = {s | φ(s) = 1}.
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(-1, 1) p r

q

(1, -1)(0, -1)(-1, -1)

(-1, 0)

R3 X

R2 X R X

X

T (R2 X)

T (R3 X)

T (R X)

Figure 1. The large triangle in the first quadrant (colored red) is the
projection of X = ±C . The three large triangles in the other quad-
rants are the projections of R X, R2 X, and R3 X. The smaller trian-
gles in the first quadrant are the projections of T (R X), T (R2 X),
and T (R3 X).

We will use the projection ρ determined by the linear functional

φ(x, y, z) = x − y + z.

This choice of φ satisfies φ(u), φ(v), φ(w) > 0, so the cone generated by u, v, w

projects to a triangle in the plane P. We need to choose a system of coordinates
on P. The fundamental theorem of affine geometry tells us that for any three points
p, q, r ∈ R2 which are not collinear, there is a unique affine transformation from P
to R2 sending ρ(u), ρ(v), ρ(w) to p, q, r . For simplicity, we choose

p = (0, 1), q = (1, 0), r = (1, 1),

which leads to the projection map

ρ(x, y, z) =

(
−2(x − z)
x − y + z

,
−2y

x − y + z

)
. (4-1)

Applying ρ to X and Y, we obtain Figure 1, which illustrates the fact that X and Y
define a valid ping-pong table.
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x

y

(0, 1)

(1, 0)

limt→∞(T R−1)t (0, 1)

x

y

(0, 1)

(1, 0)

limt→∞(T R)t (1, 0)

Figure 2. The points (T R−1)t(u) (left) and (T R)t(v) (right) in
the two-dimensional projection.

We now express the maps R and T in terms of the coordinates (a, b) on R2. The
point (a, b) is the image of a line in R3, and a straightforward computation shows
that the line which maps to (a, b) is spanned by the vector (x, y, z), where

x = −
a
4

−
b
4

+
1
2
, y = −

b
2
, z =

a
4

−
b
4

+
1
2
. (4-2)

If we apply R and T to (x, y, z) and then apply ρ, we obtain the following formulas
for the actions of R and T on R2:

R(a, b) = (b, −a), (4-3)

T (a, b) =

(
2a + b − 2
2a + 2b − 3

,
a + 2b − 2
2a + 2b − 3

)
. (4-4)

In particular, R is rotation by 90 degrees (clockwise). This explains why the
projection of Y consists of the rotations of X (the red triangle) in Figure 1.

Remark 4.1. The map T in (4-4) also has a geometric interpretation. In the Klein
(unit disk) model of the hyperbolic plane, T is the hyperbolic rotation of angle π

about the point
( 1

2 , 1
2

)
. We thank Jean-Philippe Burelle for explaining this to us.

4B. Uniqueness revisited. Using the projection ρ, we can give a more visual
explanation of the uniqueness of the cone C . The following argument is similar in
spirit to the proof of uniqueness given in Section 3, although it does not exactly
correspond to the steps of that proof.

By construction, the eigenvectors u and v project to the points p = (0, 1) and
q = (1, 0). The sequences of points (T R)t(1, 0) and (T R−1)t(0, 1) (for t ∈ Z>0)
are shown in Figure 2. These figures suggest that the first sequence approaches
(0, 1) along the unit circle, and the second sequence approaches (1, 0) along the
unit circle; this is verified in Section 4C. The tangent line to the curve (T R)t(1, 0)

becomes horizontal as t → ∞, and the tangent line to (T R−1)t(0, 1) becomes
vertical as t → ∞. If the triangle formed by (0, 1), (1, 0), and a third point s
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Q1

Q2

y

x
Y X

Y
Y

(0, 1)

(1, 1)

(1, 0)

Figure 3. The cones Q1 and Q2.

determines a valid ping-pong table, then the triangle must contain the intersection
of these two tangent lines, which is the point (1, 1). Thus, s must lie in one of the
closed cones Q1 or Q2 defined by

Q1 = R≥0

(
0
1

)
+ R≥0

(
1
1

)
+

(
1
1

)
,

Q2 = R≥0

(
1
0

)
+ R≥0

(
1
1

)
+

(
1
1

)
.

These cones are shown in Figure 3.
Let

s = λ1

(
0
1

)
+ λ2

(
1
1

)
+

(
1
1

)
=

(
λ2 + 1

λ1 + λ2 + 1

)
be a point in Q1 \ (1, 1). This means that λ1, λ2 ∈ R≥0, and λ1, λ2 are not both
zero. If X ′, Y ′ are a valid ping-pong table, then every point of Y ′ must be sent into
X ′ by T. By continuity, this implies that T must send every point in Y ′ to X ′. The
point Rs is in Y ′, but we will show that T Rs is not in X ′.

The closed triangle X ′ is the intersection of the closed cones X ′

1 and X ′

2 defined by

X ′

1 = R≥0

(
s −

(
0
1

))
+ R≥0

(
1

−1

)
+

(
0
1

)
,

X ′

2 = R≥0

(
s −

(
1
0

))
+ R≥0

(
−1

1

)
+

(
1
0

)
.



24 GABRIEL FRIEDEN, FÉLIX GÉLINAS AND ÉTIENNE SOUCY

X ′

2

X ′

1

p

(0, 1)
(1, 0)

y

x

Figure 4. The cones X ′

1 and X ′

2, whose intersection is X ′.

These cones are illustrated in Figure 4. Suppose T Rs ∈ X ′

1 ∩ X ′

2. This means there
are a, b, c, d ≥ 0 such that

T Rs = a
(

λ2 + 1
λ1 + λ2

)
+ b

(
1

−1

)
+

(
0
1

)
= c

(
λ2

λ1 + λ2 + 1

)
+ d

(
−1
1

)
+

(
1
0

)
.

Using (4-3) and (4-4), we compute

T Rs = T
(

λ1 + λ2 + 1
−λ2 − 1

)
=


2λ1 + λ2 − 1

2λ1 − 3
λ1 − λ2 − 3

2λ1 − 3

 ,

so a, b, c, d must be a solution to the system of linear equations

a(λ2 + 1) + b =
2λ1 + λ2 − 1

2λ1 − 3
, cλ2 − d + 1 =

2λ1 + λ2 − 1
2λ1 − 3

,

a(λ1 + λ2) − b + 1 =
λ1 − λ2 − 3

2λ1 − 3
, c(λ1 + λ2 + 1) + d =

λ1 − λ2 − 3
2λ1 − 3

.

This system of equations has the unique solution

a =
λ1−1

θ
, b =

2(λ2
1+2λ1λ2+λ2

2)

θ
, c =

λ1−1
θ

, d =
−2(λ2

2+λ1+3λ2+1)

θ
,

where
θ = (2λ1 − 3)(λ1 + 2λ2 + 1).

Since λ1, λ2 ∈ R≥0 and at least one of λ1 and λ2 is nonzero, b and d have opposite
signs, contradicting that both are ≥ 0. Thus, we cannot express T Rs both as a
nonnegative linear combination of generators of X ′

1 and as a nonnegative linear
combination of generators of X ′

2, so T Rs ̸∈ X ′.
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Now suppose s ∈ Q2 \ (1, 1). Let F : (a, b) 7→ (b, a) be reflection over the line
x = y. It is clear from (4-3) and (4-4) that F RF = R−1 and FT F = T. Since Q2

is the reflection of Q1 over the line x = y, we conclude from the previous argument
that T R−1s ̸∈ X ′, so again X ′ and Y ′ are not a valid ping-pong table.

4C. A smaller ping-pong table. We have shown that C is the only simplicial cone
that can be used to define a valid ping-pong table. If we drop the requirement that
C be a simplicial cone, however, then we have additional possibilities. As Figure 1
illustrates, T maps the triangles R X, R2 X, and R3 X to three smaller triangles
inside X. We can therefore obtain a smaller ping-pong table by defining X to be the
union of these three triangles, and Y to be the union of the images of these triangles
under R, R2, and R3. We will then be able to shrink X and Y even further. We now
show that X and Y can be shrunk all the way down to the unit circle.

Lemma 4.2. R and T map the unit circle to itself.

Proof. Let (a, b) be a point on the unit circle. Clearly b2
+ (−a)2

= a2
+ b2

= 1,
so R(a, b) is on the unit circle. For T (a, b), we compute(

2a + b − 2
2a + 2b − 3

)2

+

(
a + 2b − 2
2a + 2b − 3

)2

=
5a2

+ 5b2
+ 8ab − 12a − 12b + 8

4a2 + 4b2 + 8ab − 12a − 12b + 9
.

Since a2
+ b2

= 1, we can simplify this to

5 + 8ab − 12a − 12b + 8
4 + 8ab − 12a − 12b + 9

= 1,

which shows that T (a, b) is on the unit circle. □

It follows from Lemma 4.2 and the discussion in Section 4A that the subsets

X = {(a, b) | a2
+ b2

= 1, a, b > 0},

Y = {(a, b) | a2
+ b2

= 1, a < 0 or b < 0}

of the unit circle form a valid ping-pong table.
The projection ρ is defined by

ρ(x, y, z) =

(
−2(x − z)
x − y + z

,
−2y

x − y + z

)
,

so the unit circle consists of the projections of vectors (x, y, z) ∈ R3 satisfying the
quadratic equation

4(x − z)2
+ 4y2

= (x − y + z)2.

Let S be the surface in R3 defined by this equation. The maps R and T preserve this
surface, so the intersection of S with the ping-pong table in R3 defined in Section 2
is a valid ping-pong table.
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5. Comparison with the two-dimensional and four-dimensional cases

When n = 2, we have

R =

(
0 −1
1 −1

)
, U =

(
0 −1
1 2

)
, T =

(
1 0

−3 1

)
.

As in the three-dimensional case, the matrices U = T R and RU−1 R−1
= T −1 R−1

have 1 as their only eigenvalue, and the corresponding eigenspace has dimension 1.
The corresponding eigenvectors are u = (−1, 1) and v = (1, 2), and one easily
verifies that the open cone C generated by u and v determines a ping-pong table by

X = C ∪ −C, Y = R X ∪ R2 X.

One can see that C is (up to sign) the only simplicial cone with this property by an
argument similar to the proof of Lemma 3.2. Note that X ∪ Y is equal to all of R2

in this case.
When n = 4, we have

R =


0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1

 , U =


0 0 0 −1
1 0 0 4
0 1 0 −6
0 0 1 4

 , T =


1 0 0 0

−5 1 0 0
5 0 1 0

−5 0 0 1

 .

We describe a ping-pong table for ⟨R⟩ and ⟨T ⟩, which is due to Brav and Thomas.

Theorem 5.1 [Brav and Thomas 2014]. Let P = log(T R), and Q = log(T −1 R−1).
Set x = (0, 7, −2, 7), and define

C+
= cone(x, Px, P2x, P3x), C−

= cone(x, Qx, Q2x, Q3x).

The sets
X = ±C+

∪ ±C−, Y = R X ∪ R2 X ∪ R3 X ∪ R4 X

are a ping-pong table for ⟨R⟩ and ⟨T ⟩.

The proof in [Brav and Thomas 2014] shows that

T kY ⊆ ±C+ and T −kY ⊆ ±C−

for k > 0. (In addition, the proof shows that T C+
⊆ C+ and T −1C−

⊆ C−.)

Remark 5.2. In [Brav and Thomas 2014], the matrices R, T, U are represented in
a different basis (and their T plays the role of our T −1). Our matrices are obtained
from theirs by conjugating by the change of basis matrix

S =


0 0 0 1

−5 5 1 −3
5 −5 −2 3
0 5 1 −1

 .
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The vector x in Theorem 5.1 is a positive scalar multiple of Sv, where v =(
0, 1, − 25

12 , 0
)

is the vector defined on p. 338 of their paper (in the case d = k = 5).

Explicitly, the vectors defining C+ and C− are

Px = (−5, 9, −15, 11), P3x = (−1, 3, −3, 1),

x = (0, 7, −2, 7), P2x = Q2x = (0, 1, −2, 1),

Qx = (5, 16, −10, 14), Q3x = (1, 2, −2, 4).

We remark that P3x is the unique (up to scalar) eigenvector of U = T R, and Q3x
is the unique eigenvector of RU−1 R−1

= T −1 R−1. Furthermore, the matrices P2

and Q2 have rank 2, and their column spans intersect in the line spanned by
P2x = Q2x . This vector is the analogue of w in the three-dimensional case
(cf. Section 2D). In light of our results in the three-dimensional case, it seems
natural to ask whether there is a vector y such that the cone

C = cone(P3x, Q3x, P2x, y)

determines a ping-pong table by X = ±C , Y = R X ∪ R2 X ∪ R3 X ∪ R4 X. Our
experiments in Sage suggest that there is no such y.
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Euclidean and affine curve reconstruction
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(Communicated by Michael Dorff)

We consider practical aspects of reconstructing planar curves with prescribed
Euclidean or affine curvatures. These curvatures are invariant under the special
Euclidean group and the special affine groups, respectively, and play an important
role in computer vision and shape analysis. We discuss and implement algorithms
for such reconstruction, and give estimates on how close reconstructed curves
are relative to the closeness of their curvatures in appropriate metrics. Several
illustrative examples are provided.

1. Introduction

Rigid motions — compositions of translations, rotations and reflections — are fun-
damental transformations on the plane studied in a high-school geometry course.
Two shapes related by these transformations are called congruent. The geometry
studied in high school is based on the set of axioms formulated by Euclid around
300 BC and is called Euclidean geometry. Rigid motions make up the set of all
transformations on the plane that preserve Euclidean distance between two points.
A composition of two rigid motions is again a rigid motion, and the set of all rigid
motions with the binary operation defined by composition satisfies the definition
of a group (see Section 2.1). Naturally, this group is called the Euclidean group
and is denoted by E(2), where 2 indicates that the motions are considered in the
2-dimensional space, the plane.

To a human eye, two figures look the same if they are related by a rigid mo-
tion. However, since a reflection changes the orientation of an object, a group
of orientation-preserving rigid motions, consisting of rotations and translations
only, is often considered. This group is called the special Euclidean group and
is denoted by SE(2). In many applications, the congruence with respect to other
groups is considered. For example, two shadows cast by the same object onto two
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y

x

Figure 1. A special Euclidean transformation is a composition of
a rotation and a translation.

y

x

Figure 2. A special affine transformation is a composition of a
unimodular linear transformation and a translation.

different planes by blocking the rays of light emitted from a lamp are related by a
projective transformation. If a light source can be considered to be infinitely far
away (like a sun), then the shadows are related by an affine transformation. See
[Hartley and Zisserman 2004] for an excellent exposition of the roles played by
projective, (special) affine, and (special) Euclidean transformations in computer
vision. Starting in the 19th century, it was widely accepted that Euclidean geometry,
although the most intuitive, is not the only possible consistent geometry, and that
congruence can be defined relative to other transformation groups [Hawkins 1984].

In this work, we consider congruence of planar curves relative to the special
Euclidean group SE(2) and the special affine group SA(2). The latter group con-
sists of compositions of area- and orientation-preserving (i.e., unimodular) linear
transformations and translations, and is sometimes also called the equiaffine group.
In Figure 1, we show two curves related by a special Euclidean transformation,
while in Figure 2 we show two curves related by a special affine transformation. For
applications of curve matching under (special) Euclidean and affine transformations
see, for instance, [Wolfson et al. 1988; Faugeras 1994; Calabi et al. 1998; Ames
et al. 2002; Goldberg et al. 2004; Golubitsky et al. 2010; Flash and Handzel 2007;
Hoff and Olver 2014].

It is widely known that two sufficiently smooth planar curves are SE(2)-congruent
if they have the same Euclidean curvature κ as a function of the Euclidean arc-
length s. Somewhat less familiar, but also known from the 19th century, are the
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notions of curvature and arc-length in other geometries, in particular in the special
affine geometry [Guggenheimer 1977]. Similarly to the Euclidean case, one can
show that two sufficiently smooth planar curves are SA(2)-congruent if they have
the same affine curvature µ as a function of the affine arc-length α. Knowing that
the curvature as a function of the arc-length determines a curve up to the relevant
group of transformations, it is natural to ask two questions:

(1) Is there a practical algorithm to reconstruct a curve from its curvature up to
the relevant transformation group?

(2) If two curvatures are close to each other in a certain metric, how close can the
reconstructed curves be brought to each other by an element of the relevant
transformation group?

In this paper, we study both of these questions, by methods and techniques that
are well known. Namely, we review and implement a procedure for reconstructing
a curve from its Euclidean curvature by successive integrations. The procedure
for reconstructing curves from its affine curvature is more complicated and is
based on Picard iterations. An implementation of these procedures can be found
at https://egeig.com/research/curve_reconstruction. In Theorem 12, we show how
close, relative to the Hausdorff metric, two curves can be brought together by a
special Euclidean transformation if their Euclidean curvatures are δ-close in the
L∞-norm. Theorem 19 addresses the same question in the special affine case.

Many of the theoretical results presented in this paper are well known and the
new results presented here are hardly surprising. However, combined together and
illustrated by specific examples, we believe they contribute to a better understanding
of a classical, but important problem, relevant in many modern applications. This
paper is the result of an REU project, which turned out to be of great pedagogical
value, as it taught the students to combine the results and methods from various
subjects: differential geometry, algebra, analysis and numerical analysis. In addition,
this project involved theoretical work and the work of designing and implementing
algorithms. The multidisciplinary nature of this project, on one hand, and its
accessibility, on the other hand, allowed the undergraduate participants to truly
experience the richness and challenges of mathematical research. We hope that we
are able to convey to the reader the enjoyment of various aspects of the mathematical
research that we experienced while working on the project.

The paper is structured as follows. Section 2 contains preliminaries and is split
as follows: In Section 2.1, after reviewing the definitions of groups and group
actions, we define the notions of congruence and symmetry of curves relative to a
given group. In Sections 2.2 and 2.3, we follow [Guggenheimer 1977] to define
Euclidean and affine moving frames and invariants. In Section 2.4, we introduce
norms and distances, used in this paper, in the spaces of functions, matrices, matrices

https://egeig.com/research/curve_reconstruction
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of functions, and curves and prove some useful inequalities. In Section 2.5, we
establish some results about convergence of matrices and their norms.

Section 3 contains explicit formulas for reconstructing a curve from its Euclidean
curvature function and gives an upper bound on the closeness of reconstructed
curves with close Euclidean curvatures. Section 4 introduces a Picard iteration
scheme for reconstructing a curve from its affine curvature function and gives an
upper bound on the closeness of reconstructed curves with close affine curvatures.
Directions of further research are indicated in Section 5. In the Appendix, we derive
a power series representation for curves whose affine curvatures are given by a
monomial.

2. Preliminaries

2.1. Congruence and symmetry of the planar curves. To keep the presentation
self-contained, we remind the reader the standard definitions of groups and group-
actions.

Definition 1. A group is a set G with a binary operation · : G × G → G that
satisfies the following properties:

(1) (associativity) (g1 · g2) · g3 = g1 · (g2 · g3) for all g1, g2, g3 ∈ G.

(2) (identity element) There exists a unique e ∈ G such that e · g = g · e = g for
all g ∈ G.

(3) (inverse element) For each g ∈ G, there exists an element h ∈ G such that
g · h = h · g = e. We define g−1

:= h.

Definition 2. An action of a group G on a set P is a map φ : G × P → P satisfying
the following properties:

(1) (associativity) φ(g1 · g2, p) = φ(g1, φ(g2, p)) for all g1, g2 ∈ G and for all
p ∈ P.

(2) (action of the identity element) φ(e, p) = p for all p ∈ P.

We use a shorter notation φ(g, p) := gp. Each element g ∈ G determines a bijective
map g : P → P, p → gp.

Groups are often defined through their actions. For example, a rotation in the
plane by the angle θ > 0 about the origin in the counterclockwise direction sends a
point (x, y) in the plane to the point

(x̄, ȳ) = (x cos θ − y sin θ, x sin θ + y cos θ) = (x, y)R−1
θ , (1)

where the 2 × 2 matrix Rθ is given by

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
. (2)
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We multiply by the matrix on the right because we treat points (and vectors) in R2

as row vectors. We invert the matrix to satisfy the associativity property in the
definition of the group action.1 Rotation by θ = 0 corresponds to the identity matrix
and leaves all points in place, while Rθ with θ < 0 corresponds to the clockwise
rotation by the angle |θ |. The set of matrices {Rθ | θ ∈ R} with the binary operation
given by matrix multiplication satisfies the definition of a group. This group is
called the special orthogonal group and is denoted by SO(2). The word special
in the name of the group indicates that det(Rθ ) = 1 and so the orthonormal basis
defined by its columns (or rows) is positively oriented. In fact, the group SO(2)

consists of all 2 × 2 matrices whose two columns (or two rows) form a positively
oriented orthonormal basis in R2. The map φ : SO(2) × R2

→ R2 defined by (1)
satisfies the definition of a group-action. The associativity property in Definition 2
states that the action of the product of matrices Rθ1 · Rθ2 is the composition of the
rotation by the angle θ2 followed by the rotation by the angle θ1.

The translation in the plane by a vector v = (a, b) sends a point (x, y) to the point

(x̄, ȳ) = (x, y) + (a, b) = (x + a, y + b). (3)

The set of vectors v ∈ R2 with the binary operation given by vector addition satisfies
the definition of a group, with the zero vector being the identity element of this
group. Formula (3) describes the action of this group on the plane. The composition
of the rotation by θ followed by the translation by v sends a point (x, y) to the point

(x̄, ȳ) = (x cos θ − y sin θ + a, x sin θ + y cos θ + b) = (x, y)R−1
θ + v. (4)

The set of all compositions of rotations and translations also satisfies the definition
of a group. It is called the special Euclidean group and is denoted by SE(2).
This is the group of all transformations in the plane that preserve distances (and,
therefore, angles) in the plane, as well as the orientation. The composition of a rota-
tion/translation pair (Rθ2, v2) followed by a pair (Rθ1, v1) is equivalent to the rotation
Rθ1 Rθ2 = Rθ1+θ2 followed by the translation by the vector v2 R−1

θ1
+v1. Thus we can

think of the special Euclidean group as the set of pairs {(Rθ , v) | Rθ ∈SO(2), v ∈R2
}

with the group operation

(Rθ1, v1) · (Rθ2, v2) = (Rθ1 Rθ2, v2 R−1
θ1

+ v1). (5)

In other words, SE(2) = SO(2)⋉R2 is a semidirect product of the translation and
rotation groups.

If in (4) and (5), we replace the rotation matrix Rθ with an arbitrary nonsingular
2 × 2 matrix M, we obtain an action of the affine group, A(2) = GL(2) ⋉ R2,

1Since rotation matrices commute, the associativity property will be satisfied without the inversion,
but it is essential for generalizations to other groups.
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a semidirect product of the group of invertible linear transformations and trans-
lations. Restricting the matrix M to the group of unimodular matrices SL(2) =

{M | det(M) = 1}, we obtain a smaller group which is called the special affine or
the equiaffine group2 SA(2) = SL(2)⋉R2. A generic SA(2)-transformation does
not preserve distance or angles, but it preserves areas.

An action of a group on the plane induces the action on the curves in the plane.
In this paper, we consider curves satisfying the following definition.

Definition 3 (planar curve). A planar curve C is the image of a continuous locally
injective3 map γ : R → R2. We call C closed if its parametrization γ is periodic.
We often restrict the domain of γ to an open or a closed interval I ⊂ R.

Given a group G acting continuously on the plane, the image of a curve C
parametrized by γ , under a transformation g ∈ G, is the curve gC = {gp | p ∈ C}

parametrized by gγ = g ◦ γ .

Definition 4. Given a group G acting on the plane, we say that two planar curves
C1 and C2 are G-congruent (C1 ∼=

G
C2) if there exists g ∈ G, such that C2 = g C1.

Definition 5. An element g ∈ G is a G-symmetry of C if

g C = C.

It easy to show that the set of such elements, denoted by symG(C), is a subgroup
of G, called the G-symmetry group of C. The cardinality of symG(C) is called the
symmetry index of C.

Figure 1 shows two SE(2)-congruent curves, each with five SE(2)-symmetries.
Figure 2 shows two SA(2)-congruent curves, each with five SA(2)-symmetries. As
a side remark, we note that the five SA(2)-symmetries of the left curve in Figure 2,
in fact, belong to SE(2), while the five SA(2)-symmetries of the right curve do not.
The method of moving frames, pioneered by Bartels, Frenet, Serret, Cotton, and
Darboux, and greatly extended by Cartan, allows one to solve the G-congruence
problem for sufficiently smooth curves4 by assigning a frame of basis vectors along
a curve in a way that is compatible with the G-action. We will review this classical
construction of such frames for the SE(2) and SA(2) actions by following, for
the most part, the exposition given in [Guggenheimer 1977]. For a more detailed
history and generalizations to arbitrary Lie group-actions, see [Olver 2015].

2From now on we will use the term special affine.
3A map γ : I → R2, where I is an open subset of R, is locally injective if, for any t ∈ I, there

exists an open neighborhood J ⊂ I such that γ |J is injective.
4A curve is called Ck -smooth if the k-th order derivative of its parametrization γ is continuous.
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Ñ
p̃

T̃

Figure 3. The SE(2)-action preserves the lengths of vectors and
the angle between them.

2.2. Euclidean moving frame and invariants. The SE(2)-frame at point p of a pla-
nar curve C consists of the unit tangent vector T (p) and the unit normal vector N (p).
Orientation for T (p) is defined by the parametrization γ of C, while the orientation
for N (p) is chosen so that the pair of vectors T (p) and N (p) is positively oriented,
i.e., the closest rotation from T (p) to N (p) is counterclockwise. Considering T
and N to be row vectors, we combine them into an SE(2)-frame matrix

AC(p) =

(
T (p)

N (p)

)
. (6)

An important observation is that AC(p) is an orthogonal matrix. In fact, it is
precisely the rotation matrix which brings the moving frame basis consisting of
T (p) and N (p) to the standard orthonormal basis in R2 under the action (1). An
element g ∈ SE(2) acting on R2 maps the curve C to C̃ and the point p to p̃. Since
the SE(2)-action preserves tangency and length, it maps the SE(2)-frame at p ∈ C
to the SE(2)-frame at p̃ ∈ C̃. See Figure 3 for an illustration. This compatibility
property of the frame is called equivariance and can be expressed as

Ag C(gp) = AC(p)R−1
g , (7)

where C is an arbitrary curve, p ∈ C, g ∈ SE(2), Rg is the rotational part of the
transformation g.

It is well known that any C1-smooth nondegenerate curve C can be parametrized as

γ : s → p = γ (s),

so that
T (p) = γs(s) (8)
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is the unit tangent vector at the point p = γ (s) ∈ C. (Here and below, a variable in
the subscript denotes the differentiation with respect to this variable.) Explicitly, if

γ̂ : t → γ (t) = (x(t), y(t))

is any parametrization of C, then

s(t) =

∫ t

0
|γ̂τ | dτ =

∫ t

0

√
x ′(τ )2

+ y′(τ )2 dτ.

The parameter s is called the Euclidean arc-length parameter. Its differential

ds = |γ̂t | dt (9)

is called the infinitesimal Euclidean arc-length. Clearly, the integral of ds along
a curve segment produces the Euclidean length of the curve segment.

We now assume that C is C2-smooth and note that the differentiation of the identity
|T (s)| = 1 implies that Ts(s) is orthogonal to T (s), and so Ts(s) is proportional
to N (s). Thus there is a function κ(s), called the Euclidean curvature function,
such that

Ts(s) = κ(s)N (s). (10)

Explicitly, κ(s) = ±|γss |, with “+” when the rotation from γs to γss is counter-
clockwise and “−” otherwise. For an arbitrary parametrization γ̂ (t), we have

κ(t) =
det(γ̂t , γ̂t t)

|γ̂t |
3 . (11)

The Euclidean curvature of a circle of radius r is constant and is equal to 1/r . The
Euclidean curvature of C at p equals the curvature of its osculating circle5 at p.

Since |N (s)| = 1, we know that Ns(s) is proportional to T (s). Furthermore,
differentiating the scalar product identity T (s) · N (s) = 0, we conclude

Ns(s) = −κ(s)T (s). (12)

Equations (10) and (12) are called Frenet equations and can be written in matrix
form as

As = C A,

where A is the Euclidean frame matrix (6), while

C(s) = As(s)A(s)−1
=

(
0 κ(s)

−κ(s) 0

)
(13)

5The osculating circle to C at p passes through p, and the derivatives of the arc-length parametriza-
tions at s =0 (with s =0 corresponding to p) of the osculating circle and C coincide up to second order.
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is the Euclidean Cartan matrix. From the equivariance property (7) and the SE(2)-
invariance6 of C (and, therefore, of κ) it follows

κgC(gp) = κC(p),

where C is an arbitrary curve, p ∈ C, g ∈ SE(2).

2.3. Affine moving frame and invariants. The action of the special affine group
SA(2) preserves neither Euclidean distances nor angles. Thus the Euclidean moving
frame consisting of the unit tangent and the unit normal at each point of a curve C is
not compatible with the SA(2)-action. However, the SA(2)-action preserves areas,
and we can use this property to define an SA(2)-equivariant frame.

It turns out that any C2-smooth curve C can be parametrized by

γ : α → p = γ (α),

so that the area of the parallelogram defined by vectors

T (p) = γα and N (p) = γαα (14)

is 1 and the closest rotation from T (p) to N (p) is counterclockwise. The parame-
ter α is called the affine arc-length parameter. Explicitly, if

γ̂ : t → γ̂ (t) = (x(t), y(t))

is any parametrization of C, then

α(t) =

∫ t

0
det(γ̂τ (τ ), γ̂ττ (τ ))1/3 dτ. (15)

Recalling formulas (9) and (11), we rewrite (15) in terms of Euclidean curvature
and arc-length:

α(s) =

∫ s

0
κ(τ)1/3 dτ. (16)

Vectors T (p) = γα and N (p) = γαα are called the affine tangent and normal to C
at p, respectively. It is important to note that although T (p) is tangent to C at p, it
is, in general, not of the unit length, while N (p), in general, is neither perpendicular
to T (p) nor of the unit length. The SA(2)-frame matrix is then defined by

AC(p) =

(
T (p)

N (p)

)
=

(
γα

γαα

)
. (17)

An important observation is that, by construction, det(AC(p)) = 1. In fact, this is
the matrix of the unimodular linear transformation which brings the affine moving

6The Euclidean curvature κ changes its sign under reflections and, therefore, is not invariant under
the full Euclidean group E(2). Nonetheless, it is customary called the Euclidean curvature rather than
the special Euclidean curvature.
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y
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N

T̃

p̃

Ñ

Figure 4. The SA(2)-action preserves the area of the parallelogram
defined by the affine tangent and normal vectors, but not their
lengths or the angle between them.

frame basis consisting of T (p) and N (p) to the standard orthonormal basis under
the action on row vectors v → vM−1.

The affine moving frame is SA(2)-equivariant: an element g ∈ SA(2) mapping
the curve C to C̃ and the point p ∈ C to the point p̃ ∈ C̃ also maps the affine tangent
and normal vectors at p ∈ C to the affine tangent and normal vectors at p̃ ∈ C̃. See
Figure 4 for an illustration. In the matrix form, this can be expressed as

Ag C(gp) = AC(p)M−1
g , (18)

where C is an arbitrary curve, p ∈ C, g ∈ SA(2), and Mg is the matrix part of g.
By definition,

Tα(α) = N (α). (19)

Using this and differentiating the identity det(T (α), N (α)) = 1 with respect to α

we obtain det(T (α), Nα(α)) = 0. This implies that Nα is proportional to T, and,
therefore, there is a function µ(α), called the affine curvature function, such that

Nα(α) = −µ(α)T (α), (20)

where
µ(α) = − det(Nα(α), N (α)) = det(γαα(α), γααα(α)). (21)

If γ̂ (t) is an arbitrary parametrization of C, then the formula for µ(t) is rather long
(see formula (7-24) in [Guggenheimer 1977]), but we can get a more concise formula
in terms of the Euclidean curvature and the Euclidean arc-length [Kogan 2003]:

µ =
3κ(κss + 3κ3) − 5κ2

s

9κ8/3 . (22)
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The affine curvature of a conic is constant (see Section 4 for the details). The affine
curvature of C at p is the curvature of the osculating conic7 at p.

Equations (19) and (20) are the affine versions of the Frenet equations and can
be written in the matrix form as

Aα(α) = C(α)A(α), (23)

where A is the affine frame matrix (17), while

C(α) = Aα(α)A(α)−1
=

(
0 1

−µ(α) 0

)
(24)

is the affine Cartan matrix. From the equivariance property (18) and the SA(2)-
invariance8 of C (and, therefore, of µ) it follows

µgC(gp) = µC(p),

where C is an arbitrary curve, p ∈ C, and g ∈ SA(2).

2.4. Norms and distances. For a continuous function f (t) on a closed interval [0, L],
let

∥ f ∥[0,L] := max
t∈[0,L]

{| f (t)|}. (25)

For a k × ℓ matrix A with real entries we define

⟨A⟩ := max
i=1,...,k
j=1,...,ℓ

{|ai j |}, (26)

where ai j are the entries of A and | · | is the usual absolute value. If A(t) is a
matrix whose entries are functions on a real interval [0, L], we define a real-valued
function

⟨A⟩(t) := ⟨A(t)⟩. (27)

If the entries of A(t) are continuous functions, it is easy to show that ⟨A⟩(t) is
continuous on the interval [0, L] and so we may define

∥A∥[0,L] := ∥⟨A⟩(t)∥[0,L] = max
t∈[0,L]

⟨A(t)⟩ = max
t∈[0,L]

i=1,...,k
j=1,...,ℓ

{ai j (t)}, (28)

where the first equality is the definition, and the subsequent equalities follow from
(25)–(27).

7The osculating conic to C at p passes through p, and the derivatives of the affine arc-length
parametrizations at α = 0 (with α = 0 corresponding to p) of the osculating conic and C coincide up
to third order.

8The affine curvature µ is scaled under nonunimodular linear transformations and, therefore, is
not invariant under the full affine group A(2). Nonetheless, following [Guggenheimer 1977], we use
the term affine curvature rather than the special or equiaffine curvature.
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We note that ⟨ · ⟩ and ∥ · ∥[0,L] are L∞-norms on the vector spaces of matrices
of matching sizes with real entries and functional entries, respectively, and, in
particular, they satisfy the triangle inequality.

As usual, the differentiation and integration of matrices with functional entries are
defined componentwise. For a matrix A(t), whose entries are continuous functions
on a real interval [0, L], and t ∈ [0, L] we will repeatedly use the inequalities〈∫ t

0
A(τ ) dτ

〉
≤

∫ t

0
⟨A⟩(τ ) dτ ≤ ∥A∥[0,t]t ≤ ∥A∥[0,L]t ≤ ∥A∥[0,L]L . (29)

For a vector v ∈ Rℓ, its L∞-norm ⟨v⟩ and its Euclidean L2-norm |v| obey the
inequality

|v| ≤
√

ℓ⟨v⟩. (30)

In this paper, the closeness of two curves is determined by the Hausdorff distance,
and we recall its definition. Let P and Q be two subsets of Rn. We define

dP Q = sup
p∈P

inf
q∈Q

|p − q| and dQ P = sup
q∈Q

inf
p∈P

|p − q|.

Then the Hausdorff distance between P and Q is defined by

d(P, Q) = max{dP Q, dQ P}.

To find an upper bound for the Hausdorff distance between two planar curves C1

and C2 parametrized by γ1(t) and γ2(t) for t ∈ [0, L] we note that

dC1C2 = sup
τ∈[0,L]

inf
t∈[0,L]

|γ1(τ ) − γ2(t)| ≤ sup
τ∈[0,L]

|γ1(τ ) − γ2(τ )|

≤
√

2 sup
τ∈[0,L]

⟨γ1(τ ) − γ2(τ )⟩ =
√

2∥γ1 − γ2∥[0,L].

The same inequality holds for dC2C1 and, therefore, for the Hausdorff distance we
have

d(C1, C2) ≤
√

2∥γ1 − γ2∥[0,L]. (31)

2.5. Convergence. We recall the definition of uniform convergence:

Definition 6. Let { fn}
∞

n=1 be a sequence of real-valued functions on a set P. We
say that { fn} converges to a function f uniformly on P if, for every ε > 0, there
exists nε such that

| fn(p) − f (p)| < ε for all n > nε and all p ∈ P. (32)

The difference between the uniform and pointwise convergence is that one can
choose nε which “works” for all p ∈ P. If P is an interval [0, L], then uniform
convergence of { fn} to f is equivalent to

lim
n→∞

∥ fn − f ∥[0,L] = 0.
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Lemma 7. Let { fn}
∞

n=1 be a sequence of real-valued functions on a domain P
uniformly convergent to a function f on P. Assume further that each of the
functions fn , and also f , achieves its maximum value on P. Then

lim
n→∞

max
p∈P

{ fn(p)} = max
p∈P

{ f (p)}. (33)

Proof. By assumption there exist {pn} ⊂ P, n = 0, . . . ,∞, such that, for all p ∈ P,

f (p) ≤ f (p0) = m0 and fn(p) ≤ fn(pn) = mn, n ∈ Z+,

where m0 is the maximal value of f and mn is the maximal value of fn , n ∈ Z+,
on P. Identity (33) can be rewritten as

lim
n→∞

mn = m0. (34)

For an arbitrary ε > 0, let nε be such that, for all n > nε and all p ∈ P, (32) holds,
and so, for all n > nε and all p ∈ P,

f (p) − ε < fn(p) < f (p) + ε. (35)

Substitute p0 in the left inequality in (35) to get

f (p0) − ε = m0 − ε < fn(p0) ≤ mn. (36)

Substitute pn in the right inequality in (35) to get

fn(pn) = mn < f (pn) + ε ≤ m0 + ε. (37)

Together (36) and (37) imply that for an arbitrary ε > 0, there exists nε such that,
for all n > nε,

m0 − ε < mn < m0 + ε,

which is equivalent to (34). □

We say that a sequence of k×ℓ matrices {An}
∞

n=1 with real entries an;i j converges
to a k × ℓ matrix A with real entries ai j , if, for all i = 1, . . . , k, j = 1, . . . , ℓ,

lim
n→∞

an;i j = ai j .

If {An(t)} is a sequence of matrices whose elements are real-valued functions on
an interval [0, L], then we say that {An(t)}∞n=1 pointwise converges to A(t) if, for
all t ∈ [0, L] and all i = 1, . . . , k, j = 1, . . . , ℓ,

lim
n→∞

an;i j (t) = ai j (t).

If the latter convergences are uniform on [0, L], we say that {An(t)} converges to
A(t) uniformly. Equivalently, the uniform convergence can be defined by

lim
n→∞

∥An − A∥[0,L] = 0.
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From Lemma 7, we have the following important corollary, which we use
repeatedly.

Corollary 8. (1) Let {An}
∞

n=1 be a sequence of matrices with real entries convergent
to a matrix A, then

lim
n→∞

⟨An⟩ = ⟨A⟩. (38)

(2) Let {An(t)}∞n=1 be a sequence of matrices whose elements are real-valued
functions on the interval [0, L] pointwise convergent to a matrix of functions A(t).
Then, for all t ,

lim
n→∞

⟨An⟩(t) = ⟨A⟩(t). (39)

(3) If the entries of An(t) are continuous functions and {An(t)}∞n=1 converges to
A(t) uniformly on [0, L], then

lim
n→∞

∥An∥[0,L] = ∥A∥[0,L]. (40)

Proof. (1) Identity (38) is equivalent to

lim
n→∞

max
i=1,...,k
j=1,...,ℓ

{|an,i j |} = max
i=1,...,k
j=1,...,ℓ

{| lim
n→∞

an,i j |}. (41)

Let Bn , n ∈ Z+, and B denote matrices whose elements are |an,i j | and |ai j |,
respectively. Then, due to a well-known and easy-to-show fact that lim and the
absolute value are interchangeable, limn→∞ Bn = B. Note that a k × ℓ matrix with
real entries can be viewed as a real-valued function on a finite set of ordered pairs

P = {(i, j) | i = 1, . . . , k, j = 1, . . . , ℓ}. (42)

Viewed as a sequence of such functions, {Bn}
∞

n=1 converges to B uniformly on P.
Any function on a finite set attains its maximum and so we can apply Lemma 7 to
conclude that

lim
n→∞

max
p∈P

{Bn(p)} = max
p∈P

lim
n→∞

{Bn(p)},

which is equivalent to (41).

(2) Identity (39) is an immediate consequence of (38).

(3) Identity (40) is equivalent to

lim
n→∞

max
t∈[0,L]

i=1,...,k
j=1,...,ℓ

{|an,i j (t)|} = max
t∈[0,L]

i=1,...,k
j=1,...,ℓ

{| lim
n→∞

an,i j (t)|}. (43)

Let Bn(t) and B(t) denote matrices whose elements are |an,i j (t)| and |ai j (t)|, respec-
tively. Then {Bn(t)} converges to B(t) uniformly on [0, L]. Uniform convergence
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implies that entries of B(t) are continuous. We can view a k × ℓ matrix whose
entries are continuous functions on [0, L] as real-valued functions on the set

Q = P × [0, L],

where P is defined by (42). With this point of view, the sequence of functions
{Bn}

∞

n=1 converges to B uniformly on Q, and each of these functions attains its
maximum value on Q. Thus they satisfy the assumptions of Lemma 7, and so

lim
n→∞

max
q∈Q

{Bn(q)} = max
q∈Q

lim
n→∞

{Bn(q)},

which is equivalent to (43). □

3. Euclidean reconstruction

In this section, we review how a curve can be reconstructed from its Euclidean
curvature by two successive integrations (Theorem 9). We then use these formulas
to estimate how close, relative to the Hausdorff distance, two curves can be brought
together by a special-Euclidean transformation, provided their Euclidean curvatures
as functions of the Euclidean arc-length are δ-close in the L∞-norm (Theorem 12)
or δ-close in the L1-norm (Theorem 13).

Theorem 9 (Euclidean reconstruction). Let κ(s) be a continuous function on an
interval [0, L]. Then there is a unique, up to a special Euclidean transforma-
tion, curve C with the Euclidean arc-length parametrization γ (s) = (x(s), y(s)),
s ∈ [0, L], such that κ(s) = x ′(s)y′′(s) − y′(s)x ′′(s) is its Euclidean curvature.

Proof. According to (8), (10), and (12), γ is a solution of the following system of
first-order differential equations:

γ ′(s) = T (s), (44)

T ′(s) = κ(s)N (s), (45)

N ′(s) = −κ(s)T (s). (46)

Due to well-known results on the existence and uniqueness of solutions to linear
ODEs [Nagle et al. 2004], there exists a unique solution of (44)–(46) with initial data

γ (0) = (0, 0), T (0) = (1, 0), N (0) = (0, 1). (47)

It is easy to verify that such solution is given by

γ0(s) =

(∫ s

0
cos(θ(t)) dt,

∫ s

0
sin(θ(t)) dt

)
, (48)

where

θ(t) =

∫ s

0
κ(t) dt (49)
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is the tangential angle, i.e., the angle between T = γ ′

0(s) = (cos(θ(s)), sin(θ(s)))
and a horizontal line. Denote a curve parametrized by γ0 as C0, and let C1 be another
curve with Euclidean arc-length parametrization γ1(s), s ∈ [0, L], such that κ(s)
is its Euclidean curvature. Let T1(0) = γ ′

1(0) and N1(0) = γ ′′

1 (0). Then there exists
a unique special Euclidean transformation g ∈ SE(2) which is a composition of
translation by the vector −γ1(0), followed by the rotation(

T1(0)

N1(0)

)−1

,

such that
g · γ1(0) = (0, 0), g · T1 = (1, 0), g · N1 = (0, 1).

Since κ and ds are invariant under rigid motions, it follows that the curve g C1

parametrized by gγ1 satisfies (44)–(46) with the same initial data (47) and, therefore,
C0 = g C1. □

Formulas (48)–(49) allow us to construct a curve with prescribed Euclidean
curvature. The following lemma gives a sufficient condition for a reconstructed
curve to be closed. See Lemma 4 in [Musso and Nicolodi 2009] and Lemmas 1
and 2 in [Geiger and Kogan 2021].

Lemma 10. Let κ : R → R be a periodic continuous function with minimum
period ℓ if

1
2π

∫ ℓ

0
κ(s) ds =

ξ

m
, (50)

where m and ξ are two relatively prime integers and m > 1, then, the corresponding
unit speed parametrization γ , given by (48), defines a closed curve. The map γ has
minimal period mℓ. The turning number of γ over the interval [0, mℓ] is equal to ξ .
If C = I m(γ ) is simple, then ξ = 1 and m is the SE(2)-symmetry index of C.

Example 11. To illustrate the above lemma, consider the function

κ1(s) = sin(s) + cos(s) +
1
3 . (51)

Then 1
2π

∫ 2π

0 κ1(s) ds =
1
3 and the above lemma asserts that a curve with curva-

ture function κ1(s) is closed with the SE(3)-symmetry index of 3. Such curve,
reconstructed using (48), is pictured in Figure 5, left.

On the other hand, consider

κ2(s) = sin(s) + cos(s) + 1. (52)

Then 1
2π

∫ 2π

0 κ2(s) ds = 1 and the assumption m > 1 in Lemma 10 is not satisfied.
Thus the lemma does not assert that a curve for which κ2(s) is the Euclidean
curvature function is closed. In fact, the curve reconstructed using (48) is not closed,
as we can see in Figure 5, right.
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y

x

y

x

Figure 5. Left: a curve with Euclidean curvature (51). Right: a
curve with Euclidean curvature (52). Lemma 10 guarantees that
the left curve is closed, but does not make any assertion about the
right curve.

Theorem 12 (Euclidean estimate). Let C1 and C2 be two C2-smooth planar curves
of the same Euclidean arc-length L. Assume κ1(s) and κ2(s), s ∈ [0, L], are their
respective Euclidean curvature functions. If ∥κ1 − κ2∥[0,L] ≤ δ, then there exists
g ∈ SE(2) such that

d(C1, g C2) ≤

√
2

2
δL2, (53)

where d is the Hausdorff distance.

Proof. Identifying R2 with C and using Euler’s formula we may rewrite (48) as

γ (s) =

∫ s

0
eiθ(t) dt. (54)

In what follows, we will use an important inequality, stating that a chord is shorter
than the corresponding arc, illustrated in Figure 6:

|eiθ1 − eiθ2 | < |θ1 − θ2|. (55)

|θ1−θ2|

|eiθ1−eiθ2 |

Figure 6. The length of the chord |eiθ1 − eiθ2 | is shorter than the
length of the arc |θ1 − θ2|.
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For j = 1, 2, let γj (s), s ∈ [0, L], be the Euclidean arc length parametrization of
the curve Cj . Then Tj (s)=γ ′

j (s) and Nj (s)=γ ′′

j (s) are the unit tangent and unit nor-
mal vectors, respectively, to Cj . For j = 1, 2, there is a unique gj ∈ SE(2), such that

gjγj (0) = (0, 0), gj Tj (0) = (1, 0), gj Nj (0) = (0, 1). (56)

It follows from Theorem 9 that gjγj (s) =
∫ s

0 eiθ j (t) dt for j = 1, 2 and so

|g1γ1(s)−g2γ2(s)| =

∣∣∣∣∫ s

0
eiθ1(t) dt−

∫ s

0
eiθ2(t) dt

∣∣∣∣ (a)
≤

∫ s

0
|eiθ1(t)−eiθ2(t)| dt

(b)
<

∫ s

0
|θ1(t)−θ2(t)| dt

(c)
=

∫ s

0

∣∣∣∣∫ t

0
(κ1(τ )−κ2(τ )) dτ

∣∣∣∣ dt

(∗)
≤

∫ s

0

∫ t

0
|κ1(τ )−κ2(τ )| dτ dt

(d)
≤

∫ s

0

∫ t

0
∥κ1−κ2∥[0,L] dτ dt ≤

∫ s

0

∫ t

0
δ dτ dt =

δs2

2
. (57)

Inequality (a) follows from properties of definite integrals. Inequality (b) follows
from (55). Equality (c) follows from (49) and the properties of definite integrals.
Inequality (d) follows from (25).

Let g = g−1
1 g2. Then, using (31), (57) and the invariance of the Euclidean

distance under the rigid motions, we have

d(C1, g C2) ≤
√

2∥γ1 − gγ2∥[0,L] =
√

2 sup
s∈[0,L]

|γ1(s) − gγ2(s)|

=
√

2 sup
s∈[0,L]

|g1γ1(s) − g2γ2(s)| ≤
√

2
δL2

2
. □

If instead of the L∞-norm on the set of functions κ we use the L1-norm and
require that

∫ L
0 |κ1(τ ) − κ2(τ )| dτ ≤ δ, then the third line of (57) implies the

following result:

Theorem 13. Let C1 and C2 be two C2-smooth planar curves of the same Euclidean
arc-length L. Assume κ1(s) and κ2(s), s ∈ [0, L], are their respective Euclidean
curvature functions and ∫ L

0
|κ1(τ ) − κ2(τ )| dτ ≤ δ. (58)

Then there exists g ∈ SE(2) such that

d(C1, g C2) ≤
√

2δL .
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s

Figure 7. Bump function (59).

Proof. The proof proceeds along the same lines as the proof of Theorem 12.
However, inequality (∗) in (57) combined with (58) implies

|g1γ1(s) − g2γ2(s)| <

∫ s

0
δ dt = δs,

and so
d(C1, g C2) ≤

√
2 sup

s∈[0,L]

|g1γ1(s) − g2γ2(s)| ≤
√

2δL . □

Example 14. To illustrate Theorems 12 and 13, we consider a curve whose Eu-
clidean curvature function is κ(s) = sin(s) and a family of curves obtained by some
variations of κ(s). To define these variations consider the smooth bump function

f (s) =



0 if s ≤ 0,

e1/(1−s)/(e1/s
+ e1/1−s) if 0 < s < 1,

1 if s = 1,

e1/(s−1)/(e1/(s−1)
+ e1/(2−s)) if 1 < s < 2,

0 if s ≥ 2,

(59)

shown in Figure 7.
Next, for n ∈ Z\{0}, we define the functions

κ∗

n (s) = sin(s) +
2π

n
f (s) (60)

on the closed interval [0, 2π ] and let κn(s) denote the periodic extension of κ∗
n to R.

We observe that, for any L > 0,

∥κn − κ∥[0,L] ≤

∥∥∥2π

n
f (s)

∥∥∥
[0,2]

≤
2π

|n|
.

As |n| → ∞, for n > 0 and for n < 0, the sequence κn(s) uniformly converges to
sin(s). In Figure 8, we show κ10(s), κ20(s), κ40(s), and κ(s) = sin(s) over their
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κ

s

y

x

Figure 8. Left: κ∗

10(s), κ∗

20(s), κ∗

40(s), given by (60) and κ(s)=
sin(s), s ∈[0, 2π ]. Right: Curves C10, C20, C40, and C, reconstructed
from the Euclidean curvature functions shown on the left.

minimal period [0, 2π ], while in Figure 8, we show curves C10, C20, C40, and C
reconstructed from these curvatures with s ∈ [0, 2π ]. We observe that the Hausdorff
distance between C and Cn decreases as |n| increases (and so δ = 2π/|n| decreases).
At the same time, if we restrict s to an interval [0, L], with 0 < L ≤ 2π , then for a
fixed n, as L increases, the distance between C and Cn increases.

Since
∫ 2

0 f (s) ds = 1, we have
∫ 2π

0 κn(s) ds = 2π/n. Therefore, by Lemma 10,
for n ∈ Z\{−1, 0, 1}, a curve reconstructed from κn(s) with s ∈ [0, 2πn] is a closed
curve with symmetry index |n| and turning number 1. A curve reconstructed from
κ(s) = sin(s) is, however, not closed. In Figure 9, we show the curves reconstructed
from the extensions of curvatures in Figure 8 (left).

y

x

Figure 9. Closed curves reconstructed from periodic extensions
κ10(s), s ∈ [0, 20π ], κ20(s), s ∈ [0, 40π ], κ40(s), s ∈ [0, 80π ] of
κ∗

n , shown in Figure 8, and an open curve reconstructed from
κ(s)= sin(s), s ∈ [0, 12π ].
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y
x

y x

curvature κ5/3(s), s ∈ [0, 10π ] curvature κ3/5, s ∈ [0, 6π ]

turning number 3 turning number 5
SE(2)-symmetry index 5. SE(2)-symmetry index 3.

y

x

x

y

curvature κ7/3, s ∈ [0, 14π ] curvature κ−5/3, s ∈ [0, 10π ]

turning number 3 turning number −3
SE(2)-symmetry index 7. SE(2)-symmetry index 5.

Figure 10. Closed curves reconstructed from κr (s), where r is a
rational number.

It is worth noting that if, in formula (60), we replace the integer n with a rational
number r = q/ξ such that q ̸= 1 and ξ are relatively prime, then, by Lemma 10,
a curve reconstructed from κr (s), s ∈ [0, 2πq], will be a closed curve with the
SE(2)-symmetry index q and turning number ξ . See Figure 10 for examples.

4. Affine reconstruction

In this section, we start by showing how Picard iterations can be used to reconstruct
a curve from its affine curvature. We proceed by proving some upper bounds related
to Picard iterations and using them to estimate how close, relative to the Hausdorff
distance, two curves can be brought together by a special affine transformation,
provided the affine curvature functions of the curves are δ-close in the L∞-norm
(Theorem 19).
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Theorem 15 (affine reconstruction). Let µ(α) be a continuous function on an
interval [0, L]. Then there is a unique, up to a special affine transformation, curve C
with the affine arc-length parametrization γ (α) = (x(α), y(α)), α ∈ [0, L], such
that µ(α) = x ′′(α)y′′′(α) − y′′(α)x ′′′(α) is its affine curvature function.

Proof. According to (14), (19) and (20), γ is a solution of the following system of
first-order differential equations:

γ ′(α) = T (α), (61)

T ′(α) = N (α), (62)

N ′(α) = −µ(α)T (α) (63)

(equivalent to a third order ODE system of two decoupled equations γ ′′′
= −µγ ′).

Due to well-known results on the existence and uniqueness of solutions to linear
ODEs (see Theorems 5 and 6, Section 13.3 in [Nagle et al. 2004]), there exists a
unique solution of (61)-(63) with the initial data

γ (0) = (0, 0), T (0) = (1, 0), N (0) = (0, 1). (64)

Let γ0(α) be such a solution parametrizing a curve C0. Let C1 be another curve
with the affine arc-length parametrization γ1(α), α ∈ [0, L], such that µ(α) is
its affine curvature. Let T1 = γ ′

1(0) and N1 = γ ′′

1 (0). Then there exists a unique
special affine transformation g ∈ SA(2) which is a composition of translation by
the vector −γ1(0), followed by the unimodular linear transformation(

T1(0)

N1(0)

)−1

,

such that
g · γ1(0) = (0, 0), g · T1 = (1, 0), g · N1 = (0, 1).

Since µ and dα are SA(2)-invariant, it follows that the curve g C1 parametrized
by gγ1 satisfies (61)–(63) with the same initial data (64) and, therefore, C0 = g C1. □

We now consider computational aspects of reconstruction of a curve from its
affine curvature. Once T (α) is known, γ can be reconstructed by integration, which
can be done exactly or numerically depending on the complexity of T (α). To
find T (α), one needs to solve the system (62)–(63).

When µ(α) is a constant function, standard methods can be applied. In fact, as
shown in [Guggenheimer 1977], if µ = 0 then the reconstructed curve, with the
initial conditions (64), is a parabola γ = (α, α2/2). When µ > 0,

γ =

(
sin(

√
µα)

√
µ

, −
cos(

√
µα)

µ

)
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y

x

y

x

y

x

µ = 0 µ = 2 µ = −3

Figure 11. Examples of curves with constant special affine curva-
ture functions.

is an ellipse. When µ < 0,

γ =

(
sinh(

√
−µα)

√
−µ

, −
cosh(

√
−µα)

µ

)
is a hyperbola. See Figure 11 for specific examples.

When µ is nonconstant but analytic one can use power series methods to find
the solutions. The power series solutions for the case when µ is a monomial,
µ = cαk , are given in the Appendix. For an arbitrary continuous function µ, we
approximate T (α) by applying Picard iterations as follows.

As discussed in Section 2.3, (62) and (63) are equivalent to the matrix equa-
tion (23), where

A(α) =

(
T (α)

N (α)

)
is the affine frame matrix and C(α) is the affine Cartan matrix given by (24). The
Picard iterations are defined as

A0(α) = A0,

An(α) = A0 +

∫ α

0
C(t)An−1(t) dt for n > 0. (65)

It is well known that, on any interval, [0, L] as n → ∞ the sequence of {An(α)}

uniformly converges to the unique matrix of continuous functions A(α) satisfying
the integral equation

A(α) = A0 +

∫ α

0
C(t)A(t) dt (66)

and, therefore, the differential equation (23) with the initial value A0. A direct proof
for the convergence of (65) to the solutions of (23) with the initial value A0, where
C is an arbitrary continuous matrix, is given in [Guggenheimer 1977, Lemma 2.12].
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µ

α

Figure 12. µ∗

2/3(α), µ∗

3/5(α), µ∗

2/5(α), and µ∗

3/8(α), α ∈ [0, 2]

given by (67).

Example 16. We will briefly look at a few curves that are reconstructed from their
affine curvatures. Recall the bump function f (s) given by (59). Let

µ∗

n(α) = n2π2( f (α) + 1)2 (67)

with domain [0, 2] and let µn(α) be the periodic extension of µ∗
n to R; see Figure 12.

In Figure 13, we show approximations (using 200 Picard iterations) of curves with
affine curvatures µ2/3, µ2/5, µ3/5, and µ3/8, initial conditions γ (0) = (0, 0), and
A0 = I.

It is important to note that the affine analog to Lemma 10 is not valid. Indeed, it
is shown, for instance, in Example 7.2 in [Kogan and Olver 2003], that in contrast
with the Euclidean case, the total special affine curvature

∫
µ dα of a closed curve

is not topologically invariant, and thus it cannot be used to determine whether
the curve is closed or open. Moreover, as remarked in [Verpoort 2011, p. 421],
there does not exist a function of µ whose integral is a topological invariant. With
this in mind, it is worth noting that the approximations of the curves with special
affine curvatures µ2/5 and µ3/5 appear to be closed, while the curves with the
affine curvature functions µ2/3 and µ3/8 show no sign that they would close if their
domain was extended.

We now investigate the “closeness” of two curves reconstructed from “close”
affine curvatures. We start by establishing certain upper bounds:

Lemma 17. Assume that ∥C∥[0,L] = max{1, ∥µ∥[0,L]} = c. Let An be defined by the
Picard iterations (65) and A be the limit of these iterations. Then for any α ∈ [0, L]
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y

x

y

x

equiaffine curvature µ2/5 on [0, 22] equiaffine curvature µ3/5 on [0, 20]

y

x

y

x

equiaffine curvature µ2/3 on [0, 10] equiaffine curvature µ3/8 on [0, 8]

Figure 13. Approximations of curves, using 200 Picard iterations,
reconstructed from periodic extensions of the affine curvature func-
tions shown in Figure 12.

the following inequalities hold:

⟨An⟩(α) ≤ ⟨A0⟩

n∑
i=0

(cα)i

i !
, (68)

⟨A⟩(α) ≤ ⟨A0⟩ecα, (69)

⟨An − An−1⟩(α) ≤ ⟨A0⟩
(cα)n

n!
, (70)

⟨An − A⟩(α) ≤ ⟨A0⟩ecα (cα)n+1

(n + 1)!
. (71)

Proof. (1) For n = 0, (68) states that ⟨A0⟩ ≤ ⟨A0⟩, which is trivially true. We
proceed by induction. Assume that (68) holds for all 0 ≤ k < n. Then from (65),
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(29) and the triangle inequality, we have

⟨An⟩(α) ≤ ⟨A0⟩ +

∫ α

0
⟨C An−1⟩(t) dt. (72)

Note that, for any matrix

A =

(
a11 a12

a21 a22

)
,

we have

C A =

(
a21 a22

−µa11 −µa12

)
,

and, therefore, since c ≥ ∥µ∥[0,L] and c ≥ 1,

⟨C A⟩(t) ≤ c⟨A⟩(t). (73)

Returning to (72) and using the inductive assumption, we then have

⟨An⟩(α) ≤ ⟨A0⟩+c
∫ α

0
⟨An−1⟩(t)dt ≤ ⟨A0⟩+c⟨A0⟩

n−1∑
i=0

∫ α

0

(ct)i

i !
dt

= ⟨A0⟩

(
1+c

n−1∑
i=0

ciαi+1

(i+1)!

)
= ⟨A0⟩

(
1+

n∑
i=1

ciαi

i !

)
= ⟨A0⟩

n∑
i=0

(cα)i

i !
. (74)

(2) To show (69), we use (39) and (68)

⟨A⟩(α) = lim
n→∞

⟨An⟩(α) ≤ ⟨A0⟩

∞∑
i=0

(cα)i

i !
= ⟨A0⟩ecα. (75)

(3) For n = 1, (70) states that ⟨A1 − A0⟩(α) ≤ ⟨A0⟩cα. This, indeed, holds because
by (65) A1(α) − A0(α) =

∫ α

0 C(t)A0 dt , and so by (29) and (73)

⟨A1 − A0⟩(α) ≤

∫ α

0
⟨C(t)A0⟩ dt ≤

∫ α

0
c⟨A0⟩ dt = ⟨A0⟩cα.

We proceed by induction. Assume that (70) holds for all 1 ≤ k < n. By (65),

An(α) − An−1(α) =

∫ α

0
C(t)(An−1(t) − An−2(t)) dt,

and then by (29), (73), and the inductive hypothesis

⟨An − An−1⟩(α)≤

∫ α

0
c⟨An−1− An−2⟩(t) dt ≤⟨A0⟩

∫ α

0
c

(ct)n−1

(n − 1)!
dt =⟨A0⟩

(cα)n

n!
.
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(4) To show (71), we note that for any integer j > 0, due to the triangle inequality
and (70), we have

⟨An − A⟩(α) ≤ ⟨An − An+1⟩(α) + ⟨An+1 − An+2⟩(α) + . . .

+ ⟨An+ j−1 − An+ j ⟩(α) + ⟨An+ j − A⟩(α)

≤ ⟨A0⟩

n+ j∑
i=n+1

(cα)i

i !
+ ⟨An+ j − A⟩(α). (76)

Since An+ j (α) converges to A(α) as j → ∞, lim j→∞⟨An+ j − A⟩(α) = 0, and so
(76) implies

⟨An − A⟩(α) ≤ ⟨A0⟩

∞∑
i=n+1

(cα)i

i !
= ⟨A0⟩

(
ecα

−

n∑
i=0

(cα)i

i !

)
. (77)

Due to Taylor’s remainder theorem, there exists α0 ∈ [0, α] such that

Rn = ecα
−

n∑
i=0

(cα)i

i !
= ecα0

(cα)n+1

(n + 1)!
≤ ecα (cα)n+1

(n + 1)!
,

where the last inequality is true because c >0 and so ecα is an increasing function. □

Next, we establish the bounds on the distance between two affine frames re-
constructed from two δ-close (in the L∞ norm) affine curvature functions. This
result is consistent with a well-known ODE result on continuous dependence of the
solutions of an ODE on its parameters (see, for instance, Theorem 10, Section 13.4
in [Nagle et al. 2004] and Theorem 3, Chapter 5 in [Birkhoff and Rota 1962]).

Proposition 18. Let µ(α) and µ̃(α) be two continuous functions on the interval
[0, L] and let C and C̃ be corresponding Cartan’s matrices defined by (24). Let
ĉ = max{1, ∥µ∥[0,L], ∥µ̃∥[0,L]}. Let An and Ãn be defined by the Picard iterations
(65) for the given matrices C and C̃ , respectively, and A, Ã be the limits of these
iterations. If ∥µ − µ̃∥[0,L] ≤ δ, then, for all α ∈ [0, L],

⟨An − Ãn⟩(α) ≤ ⟨A0⟩δα

n−1∑
i=0

(ĉα)i

i !
for n > 0, (78)

⟨A − Ã⟩(α) ≤ ⟨A0⟩δαeĉα. (79)

Proof. (1) We first observe that, for all α ∈ [0, L], ⟨C −C̃⟩(α) = |µ(α)−µ̃(α)| < δ.
For n = 1, (78) states that ⟨A1 − Ã1⟩(α) ≤ ⟨A0⟩δα. This, indeed, holds because

by (65), keeping in mind that A0(α) = Ã0(α) = ⟨A0⟩, we have

⟨A1 − Ã1⟩(α) ≤

∫ α

0
⟨(C − C̃)A0⟩(t) dt ≤

∫ α

0
⟨A0⟩|µ̃(t) − µ(t)| dt

≤ ⟨A0⟩

∫ α

0
δ dt = ⟨A0⟩δα.
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We proceed by induction. Assume that (78) holds for all 1 ≤ k < n. Then

⟨An − Ãn⟩(α)
(a)
≤

∫ α

0
⟨C An−1 − C̃ Ãn−1⟩(t) dt

=

∫ α

0
⟨C An−1 − C Ãn−1 + C Ãn−1 − C̃ Ãn−1⟩(t) dt

(b)
≤

∫ α

0
ĉ⟨An−1 − Ãn−1⟩(t) dt +

∫ α

0
δ⟨ Ãn−1⟩(t) dt

(c)
≤

∫ α

0
ĉ⟨A0⟩δt

n−2∑
i=0

(ĉt)i

i !
dt +

∫ α

0
⟨A0⟩δ

n−1∑
i=0

(ĉt)i

i !
dt

= ⟨A0⟩δ

(
ĉ

n−2∑
i=0

ĉiαi+2

i !(i + 2)
+

n−1∑
i=0

ĉiαi+1

(i + 1)!

)

= ⟨A0⟩δ

(n−1∑
i=1

ĉiαi+1

(i − 1)!(i + 1)
+

n−1∑
i=0

ĉiαi+1

(i + 1)!

)

= ⟨A0⟩δ

(
α +

n−1∑
i=1

ĉiαi+1
(

1
(i − 1)!(i + 1)

+
1

(i + 1)!

))

= ⟨A0⟩δα

(
1 +

n−1∑
i=1

ĉiαi 1
i !

)
= ⟨A0⟩δα

n−1∑
i=0

(ĉα)i

i !
, (80)

where, for inequality (a) we used (65), (29), and the triangle inequality. In inequality
(b) we use (73) and the triangle inequality, and in inequality (c) we use the inductive
assumption and (68).

(2) To show (79), we note that since An(α) and Ãn(α) converge to A(α) and Ã(α),
respectively, as n → ∞, then by (39), limn→∞⟨An − Ãn⟩(α) = ⟨A − Ã⟩(α), and so
taking the limit of both sides in the inequality (78) as n → ∞, we obtain (79). □

In the next theorem, we establish an upper bound on how close (in the Hausdorff
distance) two curves with δ-close (in the L∞-norm) affine curvature functions can
be brought together by a special affine transformation.

Theorem 19 (affine estimate). Let C1 and C2 be two C3-smooth planar curves
of the same affine arc-length L. Assume µ1(α) and µ2(α), α ∈ [0, L], are their
respective affine curvature functions. Assume further that C2 satisfies the initial
conditions (64).9 If ∥µ1 −µ2∥[0,L] ≤ δ and ĉ = max{1, ∥µ1∥[0,L], ∥µ2∥[0,L]}, then

9If we omit this assumption, then the right-hand side of (83) must be multiplied by ⟨A2(0)⟩

according to (79), and so the right-hand side of (81) must be multiplied by ⟨A2(0)⟩, as well.
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there is g ∈ SA(2), such that

d(g C1, C2) ≤
√

2
δL
ĉ

(eĉL
− 1), (81)

where d is the Hausdorff distance.

Proof. For i = 1, 2, let γi (α), α ∈ [0, L], be the affine-arc length parametrization
of Ci , while Ti (α) = γ ′

i (α) and Ni (α) = γ ′′

i (α) are the affine frame vectors along
the corresponding curves. Then, there is a unique g ∈ SA(2) such that

gγ1(0)=γ2(0)=(0,0), gT1(0)=T2(0)=(1,0), gN1(0)=N2(0)=(0,1). (82)

Due to the SA(2)-invariance of the affine curvature function, the curve g C1

parametrized by gγ1(α) has affine curvature function µ1(α). It follows from
Theorem 15 that gγ1(α) is the unique solution of (61)–(63), with µ(α) = µ1(α)

and γ2(α) is the unique solution of (61)–(63), with µ(α) = µ2(α), both with initial
conditions (82).

Denote the affine frame of g C1 by

A(α) =

(
gT1(α)

gN1(α)

)
and the affine frame of C2 by

Ã(α) =

(
T2(α)

N2(α)

)
.

Then
⟨gT1 − T2⟩(α) ≤ ⟨A − Ã⟩(α) ≤ δαeĉα, (83)

where the first inequality is due to the definition of ⟨ · ⟩ and the second inequality is
due to (79). Since gγ1(α) =

∫ α

0 gT1(t) dt + T0 and γ2(α) =
∫ α

0 T2(t) dt + T0, we
have, for all α ∈ [0, L],

⟨gγ1 − γ2⟩(α) ≤

∫ α

0
⟨gT1 − T2⟩(t) dt ≤

∫ α

0
δteĉt dt

≤

∫ α

0
δLeĉt dt =

δL
ĉ

(eĉα
− 1). (84)

It then follows from (31) and (84) that

d(g C1, C2) ≤
√

2∥gγ1 − γ2∥[0,L]

=
√

2 max
α∈[0,L]

⟨gγ1, −γ2⟩(α) ≤
√

2
δL
ĉ

(eĉL
− 1). □

5. Conclusion

We considered practical aspects of reconstructing planar curves with prescribed
Euclidean or affine curvatures. An immediate extension of the current work would
be the reconstruction of planar curves with prescribed projective curvatures, and
obtaining distance estimates between curves, modulo a projective transformation,
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compared to the distance between the projective curvatures. Indeed, the projective
group, containing both the special Euclidean and the special affine groups, plays
a crucial role in computer vision (see, for, instance [Faugeras and Luong 2001;
Hartley and Zisserman 2004]). Extension to space curves is another direction with
immediate applications.

By considering specific group actions, we take advantage of their specific struc-
tural properties and obtain results that can be immediately suitable for applications.
However, the generalization of the moving frame method from [Fels and Olver
1999; Olver 2015] allows us, in principle, to generalize our approach to an action of
an arbitrary Lie group G on curves (or even on higher-dimensional submanifolds)
in some ambient metric space. In such a generalization, a G-equivariant moving
frame map from the corresponding jet space to the group G plays the role of the
G-frame matrix A, appearing in this paper, and we will seek an estimate of how
close two submanifolds can be brought together by an element of G, provided the
Maurer–Cartan invariants for the G-action are sufficiently close.

In this paper, we used the Hausdorff distance between curves when considering
both the SE(2)- and the SA(2)-actions on the plane. However, while the Hausdorff
distance is SE(2)-invariant, it is not SA(2)-invariant and so it does not provide a
natural measure of distance between two curves in the special affine case. In a
future work, it is worthwhile to explore SA(2)-invariant alternatives for measuring
distance between two curves, based, for instance, on the area of the region between
two curves. In the generalization to other group actions, the goal would be to
consider a G-invariant distance between two submanifolds.

6. Appendix

If a given special affine curvature is analytic, it is possible to reconstruct the
corresponding curve by looking for power series solutions to the second-order ODE
system Tαα = −µ(α)T. We illustrate this approach by reconstructing curves whose
special affine curvatures are of the form µ(α) = cαk for c ∈ R and k ∈ N.

Proposition 20. For c ∈ R, k ∈ N and T0, N0 ∈ R2 such that det[T0, N0] = 1, let C
be the curve whose affine curvature function is µ(α) = cαk , the initial affine tangent
vector is T0 and the initial affine normal is N0. Then the affine tangent vector along
C is given by the absolutely convergent power series

T (α) = −T00
(
−

1
K

) ∞∑
i=1

(−c)iαK i

i ! K 2i+10(−1/K + i + 1)

+ N00
( 1

K

) ∞∑
i=1

(−c)iαK (i+1)

i ! K 2i+10(1/K + i + 1)
, (85)

where K = k + 2 and 0 denotes the gamma function.
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Proof. We first represent the tangent vector T (α) by

T = b0 + b1α + b2α
2
+ b3α

3
+ · · · + bnα

n
· · · , (86)

where each bi is a vector coefficient, with b0 = T0 and b1 = N0 being the initial
values of the affine tangent and the affine normal, respectively.

We write out the power series representation of Tαα and −cαk T :

Tαα = 0b0+0b1α+2b2+3·2b3α+·· ·+n(n−1)bnα
n−2

· · · , (87)

−cαk T = −cb0α
k
−cb1α

(k+1)
−cb2α

(k+2)
−cb3α

(k+3)
−·· ·−cbnα

(k+n)
−·· · . (88)

The equality of these two power series implies the equality of vector coefficients
with the same powers of α in two series. It follows that

bn =

{
0 when 2 ≤ n ≤ k + 1,

−cbn−(k+2)/(n(n − 1)) when n ≥ k + 2.
(89)

Then bk+2 and bk+3 can be written in terms of b0 and b1:

bk+2 = −
cb0

(k + 2)(k + 1)
, bk+3 = −

cb1

(k + 3)(k + 2)
. (90)

Using induction, when n mod (k + 2) = 0, we can express bn in terms of b0, when
n mod (k+2)= 1, we can express bn in terms of b1, and we can show that otherwise
bn = 0. This gives us the power series representation for T in terms of b0 and b1 as

T (α) = b0 + b1α +

∞∑
i=1

(−cαk+2)i
(( i∏

j=1

1
j (k + 2)( j (k + 2) − 1)

)
b0

+

( i∏
j=1

1
j (k + 2)( j (k + 2) + 1)

)
b1α

)
. (91)

We can split (91) into two parts:

B0 = b0

∞∑
i=1

( i∏
j=1

1
j (k+2)( j (k+2)−1)

)
(−cαk+2)i

= b0

∞∑
i=1

( i∏
j=1

1
( j (k+2)−1)

)
(−cαk+2)i

i !(k+2)i = b0

∞∑
i=1

9−(K , i)
(−cαK )i

i ! K i (92)

and

B1 = b1

∞∑
i=1

( i∏
j=1

1
j (k+2)( j (k+2)+1)

)
(−cαk+2)iα

= b1

∞∑
i=1

( i∏
j=1

1
( j (k+2)+1)

)
(−cαk+2)iα

i !(k+2)i = b1

∞∑
i=1

9+(K , i)
(−cαK )iα

i ! K i , (93)
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where K = k + 2 and

9−(K , i) =

i∏
j=1

1
( j K − 1)

=
1

K i

1∏i
j=1( j − 1/K )

, (94)

9+(K , i) =

i∏
j=1

1
( j K + 1)

=
1

K i

1∏i
j=1( j + 1/K )

. (95)

These functions involve what is called rising factorials, defined by

z ī
:= z(z + 1) · · · (z + i − 1) =

i−1∏
j=0

(z + j).

Rising factorials can be expressed in terms of 0 functions, 0(z)=
∫

∞

0 x z−1e−x dx , as

z ī
=

0(z + i)
0(z)

.

For details see formulas (5.84), (5.85) and (5.89) on pp. 210–211 of [Graham et al.
1994]. Since

i∏
j=1

(
j −

1
K

)
= −K

(
−

1
K

)i+1

= −K
0(−1/K + i + 1)

0(−1/K )
, (96)

i∏
j=1

(
j +

1
K

)
= K

(
1
K

)i+1

= K
0(1/K + i + 1)

0(1/K )
, (97)

we can rewrite (94)–(95) using 0 functions:

9−(K , i) =

i∏
j=1

1
( j K − 1)

= −
1

K i+1

0(−1/K )

0(−1/K + i + 1)
, (98)

9+(K , i) =

i∏
j=1

1
( j K + 1)

=
1

K i+1

0(1/K )

0(1/K + i + 1)
. (99)

Therefore,

B0(α) = b0

∞∑
i=1

9−(K , i)
(−cαK )i

i ! K i

= b0

∞∑
i=1

(
−

1
K i+1

0(−1/K )

0(−1/K + i + 1)

)
(−cαK )i

i ! K i

= −b00

(
−

1
K

) ∞∑
i=1

1
0(−1/K + i + 1)

(−cαK )i

i ! K 2i+1 , (100)
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Figure 14. Curves with special affine curvature µ(α) = α (left)
and µ(α) = α2 (right).

and

B1(α) = b1

∞∑
i=1

9+(K , i)
(−cαK )iα

i ! K i

= b1

∞∑
i=1

(
1

K i+1

0(1/K )

0(1/K + i + 1)

)
(−cαK )iα

i ! K i

= b10

(
1
K

) ∞∑
i=1

1
0(1/K + i + 1)

(−cαK )iα

i ! K 2i+1 . (101)

Convergence of series (91) for all α follows from a general known result [Tenen-
baum and Pollard 1963, Theorem 39.22, p. 560]. Directly, absolute convergence
of subseries (92) and (93) can be verified by the ratio test, implying absolute
convergence of series (91). □

The power series for the affine arc-length parametrization γ (α) is obtained
by integrating the series T (α). See Figure 14 for reconstructions of curves with
curvatures µ(α) = α and µ(α) = α2 respectively.

Remark 21. The system Tαα = −cαk T consists of two decoupled equations of the
type u′′(α) = −cαku(α), whose general solution in terms of the Bessel functions,
can be found, for instance, in Section 14.1.2, subsection 7, number 3 of [Polyanin
and Zaitsev 2012]. The Bessel functions can be expended into power series involving
the gamma function, recovering series (85). The advantage of formula (85) is in its
explicit dependence on the initial vectors T0 and N0. In addition, our direct proof
illustrates how the power series approach can be applied for other analytic affine
curvatures µ(α).
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Biological models, monotonicity methods,
and solving a discrete reaction-diffusion equation

Carson Rodriguez and Stephen B. Robinson
(Communicated by Suzanne Lenhart)

The problem of interest is a discrete reaction-diffusion equation motivated by
models in population biology. We consider

Au + φ(u) + λ f (u) = 0 for u ∈ Rn−1,

where n ≥ 3, A is an (n−1) × (n−1) matrix such that −A is monotone, φ :

Rn−1
→ Rn−1 and f : Rn−1

→ Rn−1 are smooth functions, and λ is a positive real
constant. Of particular interest is the case where A is the discrete Laplacian and
f is the vector-valued logistic function. The function φ(u) will encode boundary
conditions. Our primary goal is to establish the existence of nonnegative solutions
for several interesting choices of φ. For each choice we use monotonicity methods
to find nonnegative solutions for appropriate ranges of λ.

1. Introduction

The problem of interest is a discrete reaction-diffusion equation motivated by models
in population biology. We consider

Au + φ(u) + λ f (u) = 0 for u ∈ Rn−1, (1)

where n ≥ 3, A is an (n−1) × (n−1) matrix such that −A is monotone, φ :

Rn−1
→ Rn−1 and f : Rn−1

→ Rn−1 are smooth functions, and λ is a positive real
constant. Of particular interest are the discrete Laplacian

A =



−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 . . . 0
0 0 1

. . .
. . . 0

...
. . .

. . .
. . . −2 1

0 · · · · · · 0 1 −2


,
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the vector-valued logistic function

f (u) = u(1−u) :=


u1(1−u1)

u2(1−u2)
...

un−1(1−un−1)

 ,

and the function

φ(u) :=


ϕ(u)

0
...

0

 ,

which encodes boundary conditions. Our primary goal is to establish the existence
of nonnegative solutions for several interesting choices of φ. For each choice we
use monotonicity methods to find nonnegative solutions for appropriate ranges of λ.

1.1. Motivation. Begin by considering a continuous model for population growth
that is often encountered in elementary ordinary differential equations. Let u
represent total population measured as a percentage of carrying capacity, so u = 1
would mean that the population is using up all available resources, no more and
no less. One way to model how the total population will change over time is the
logistic equation

du
dt

= λu(1 − u), u(0) = u0, (2)

where λ represents a growth rate and u0 is the initial population. Since it is
impossible to have a negative population, we assume u ≥ 0. In elementary ordinary
differential equations we learn that the equilibrium solutions are found by solving

0 = λu(1 − u), (3)

i.e., du/dt = 0, so the population does not change over time. We get u ≡ 1 or u ≡ 0.
We also learn that if u0 > 0 then limt→∞ u(t) = 1; i.e., u ≡ 1 is a stable equilibrium
that “attracts” positive solutions.

The logistic equation above makes predictions about the total population but
says nothing about how the population might be distributed over its environment.
A simple way to introduce this is to model the environment as an interval [0, 1]

and introduce a “spatial” variable, x ∈ [0, 1]. Now we can track how a population
changes over time at each point of [0, 1] by solving

∂u
∂t

= k
∂2u
∂x2 + λu(1 − u). (4)

The “reaction” term λu(1 − u) still pushes the values of u towards 1, but the “diffu-
sion” term, k(∂2u/∂x2), with k > 0, causes u to spread from higher concentrations
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Figure 1. Diffusion effects.

to lower. Figure 1, left, shows the second partial derivative as positive and therefore
the graph of u is concave up. The population will then diffuse in towards the point
where the minimum is, and so the effect of diffusion is to increase population in
that region. A similar situation occurs in Figure 1, right, where the population will
diffuse outwards away from the maximum point and thus the effect of diffusion
is to decrease population in that region. The influences of reaction and diffusion
compete with each other to determine how u is changing with time.

If u reaches an equilibrium, we will have ∂u/∂t ≡ 0, i.e., u is not changing over
time, so our equilibrium equation is

0 = k
∂2u
∂x2 + λu(1 − u). (5)

Note that we can now divide through by k and rename λ/k as λ again. If we have a
stable equilibrium, then time-dependent solutions that start “near” this equilibrium
move towards the equilibrium. Equilibrium solutions provide a framework for
understanding the time-dependent solutions.

There is another influence that we have not yet accounted for and that is whether
the population will move through the boundary in any way. The novelty of our paper
comes entirely from the boundary conditions that we consider. We will impose
the boundary conditions u(1) = 0 and (∂u/∂ν)(0)+ g(u) = 0. For simplicity we
have imposed the Dirichlet condition at x = 1. The condition u(1) = 0 is often
interpreted as the boundary at x = 1 being lethal. If you cross that boundary you are
gone forever and cannot reenter. At the left boundary, x = 0, we study two different
versions of (∂u/∂ν)(0)+g(u) = 0. The value of (∂u/∂ν)(0) represents the outward
rate of change at x = 0, i.e., (∂u/∂ν)(0) = −u′(0), which is often assumed to be
proportional to the rate of flow of population into [0, 1] across the boundary x = 0.
The term g(u) tells us how that flow depends on the population in [0, 1].

In one case, we will consider (∂u/∂ν)(0) + g(u(0)) = 0, so the flow is entirely
determined by conditions at the boundary. Moreover we assume that g is a function
modeling nonlinear “density-dependent” behavior. This interaction can come in
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a lot of forms, but we consider primarily the g that models species who prefer to
stay in a habitat with higher concentrations of u; i.e., as the density increases at the
boundary a smaller proportion of the population will leave through that boundary.
Thus the per capita flow across the boundary, which is proportional to

(∂u/∂ν)(0)

u(0)
= −

g(u(0))

u(0)
,

is assumed to be decreasing in absolute value. This is referred to as “negative density-
dependent” behavior. A relatively simple model to consider is g(u) =

√
u + 1. This

behavior was observed in Glanville fritillary butterflies; for example, see [Cantrell
and Cosner 2006] . The butterflies were observed to be less likely to leave their
patch boundary if the local density of Glanville fritillary butterflies within the patch
was great enough.

In the second case, we consider (∂u/∂v)(0) + g(u) = 0, where g(u) is linear
but “nonlocal” . Thus the flow through the boundary depends on the population
density throughout the region [0, 1] and not just at the boundary. Within certain
restrictions our condition allows the interior population density to have either a
positive or negative influence on the flow across the boundary.

In this paper we study a discretized version of (5) with boundary conditions as
above. We will prove the existence of nonnegative solutions in several situations
using monotonicity methods and will illustrate those results with examples and
simple computations in Maple.

We were primarily motivated by [Cantrell and Cosner 2006; Bruno 2021], and
subsequent papers such as [Ashley et al. 2013; Cantrell and Cosner 2007; God-
dard and Shivaji 2017], where nonlinear boundary conditions are considered in
combination with Allee effects. Our results provide a discrete alternative to the
continuous results referenced above, and significantly generalize the boundary
conditions considered in [Bruno 2021].

In order to be somewhat self-contained we will first discuss some standard theoret-
ical background before moving on to prove the main results and then presenting some
examples and computations. We end by posing a few possible research questions.

2. Theoretical background

2.1. Boundary conditions. We follow the model proposed in [Cantrell and Cosner
2006]. Consider a common formulation of the Robin boundary condition

α
∂u
∂ν

+ (1 − α)u = 0, where 0 < α < 1. (6)

Note that ∂u/∂ν is an outward rate of change. At the boundary x = 0, we have
∂u/∂ν = −u′(0). At x = 1, we have ∂u/∂ν = u′(1). The parameter α is often
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u u

Figure 2. Graphs of g(u) (left) and α(u) (right).

interpreted as the probability of an individual staying in the domain when reaching
the boundary.

The relationship between α and u is modeled by

α(u) =
u

u+g(u)
. (7)

Thus, we have

0 = α(u)
∂u
∂ν

+ (1 − α(u))u =

(
u

u + g(u)

)
∂u
∂ν

+

(
u + g(u)

u + g(u)
−

u
u + g(u)

)
u. (8)

Multiplying through by u+g(u) we are left with u(∂u/∂ν+g(u))= 0. In this paper
we will consider ∂u/∂ν = −g(u). For simplicity we only impose this condition at
one boundary point, and maintain a Dirichlet condition at the other. We note that
several combinations of Dirichlet and density-dependent boundary conditions are
considered for the continuous model in [Ashley et al. 2013].

The first case we study is when (∂u/∂ν)(0) = −g(u(0)), and we assume that
g : [0, ∞) → R is twice continuously differentiable, with

g(0) = d > 0, g′(u) ≥ 0, g′′(u) ≤ 0, lim
u→∞

g(u)

u
= 0. (9)

Therefore, α ∈ (0, 1) and

lim
u→∞

α(u) =
u

u + g(u)
= 1.

Thus as u increases the probability of individuals leaving through the boundary
decreases; see Figure 2. These assumptions model negative density-dependent
boundary behavior.

The second case that we study will consider a linear nonlocal boundary condition
in the form

g(u) =

n∑
k=0

aku(xk) + d,
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where ak ∈ R, and the xk are a collection of points in a mesh for the interval [0, 1].
This boundary condition models a population whose flow through the boundary
depends on the full distribution of the population in [0, 1]. We will assume d > 0.
Our analysis will allow the coefficients, i.e., ak for k = 0, . . . , n − 1, to be either
positive or negative within certain bounds.

2.2. Discretization. In this subsection we discretize the boundary value problem

0 = u′′(x) + λu(x)(1 − u(x)), x ∈ (0, 1),

u(1) = 0,
∂u
∂ν

(0) = −g(u).

Let n ≥ 3 and let the step size be h = 1/n. For k = 0, . . . , n, let xk = k/n and
let uk = u(xk). We approximate the first derivative at the boundary using

u′(x) ≈
u(x + h) − u(x)

h
= n

(
u
(

x +
1
n

)
− u(x)

)
.

It follows that (∂u/∂ν)(0) = −u′(0) ≈ −n(u1 − u0).
We approximate the second derivative in the interior using

u′′(x) ≈
1
h

((
u(x + h) − u(x)

h

)
−

(
u(x) − u(x − h)

h

))
= n2

(
u
(

x +
1
n

)
− 2u(x) + u

(
x −

1
n

))
. (10)

It follows that u′′(xk) ≈ n2(uk+1 − 2uk + uk−1).
Consider the discretization of the boundary conditions. At the right endpoint

the condition u(1) = 0 simply becomes un = 0. At the left endpoint let’s first
focus on the previously described nonlinear condition. The condition (∂u/∂v)(0) =

−g(u(0)) becomes −n(u1 − u0) = −g(u0). Thus u1 = u0 + (g(u0)/n). However,
as will be seen below, it is more useful to solve for u0 as a function of u1. Let
G(u) = u + g(u)/n, with derivatives G ′(u) = 1 + g′(u)/n and G ′′(u) = g′′(u)/n.
Using (9) we have G(0) = d/n, G ′(u) ≥ 1, and G ′′(u) ≤ 0, so G is strictly
increasing, and G is concave. It is not hard to see that limu→∞g′(u) = 0, and thus
limu→∞G ′(u) = 1. For u < 0 we can extend G(u) as

d
n

+

(
1 +

g′(0)

n

)
u,

so G(u) = 0, where u = −d/(n + g′(0)).
We have u1 = G(u0), but we want to solve for u0 in terms of u1. Since G is

smooth and strictly increasing, it has a smooth inverse ϕ(u) by the inverse function
theorem. Thus we can rewrite the boundary condition as u0 = ϕ(u1). Using
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y

x

Figure 3. G(u) is in red and ϕ(u) is in blue. The dashed lines
represent asymptotes with slope 1.

symmetry about y = u, we get that

ϕ
(d

n

)
= 0, ϕ is increasing with φ′(u) ≤ 1,

ϕ is convex, lim
u→∞

ϕ′(u) = 1; (11)

see Figure 3.
The second case that we consider uses un = 0 and −n(u1 −u0) = −g(u), where

g(u) =

n−1∑
k=0

akuk + d = a0u0 + ⟨a, u⟩ + d, (12)

where a := (a1, . . . , an−1), and ⟨ · , · ⟩ is the standard inner product in Rn−1. Solving
−n(u1 − u0) = −g(u) for u0 leads to

u0 =
n

n+a0

(
u1 −

1
n
⟨a, u⟩ −

d
n

)
=: ϕ(u). (13)

We assume

n + a0 > 0, ⟨a, v⟩ < n, (14)

where v is the principal eigenvector associated with the discrete Laplacian, which
is normalized so that its first component is v1 = 1. (See discussion of the discrete
Laplacian below.)

Next we discretize the equation u′′(x)+λu(x)(1−u(x)) = 0. Using the approx-
imation for u′′(x) above, we get

n2(uk+1 − 2uk + uk−1) + λuk(1 − uk) = 0

for k = 1, . . . , n − 1. For k = n − 1 we can substitute un = 0 from the boundary
condition above. For k = 1 we can substitute u0 =ϕ(u) from the boundary condition
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above. We now have the following system of n − 1 equations:

n2(u2 − 2u1 + 0) + n2ϕ(u) + λu1(1 − u1) = 0,

n2(u3 − 2u2 + u1) + 0 + λu2(1 − u2) = 0,
...

n2(un−1 − 2un−2 + un−3) + 0 + λun−2(1 − un−2) = 0,

n2(0 − 2un−1 + un−2) + 0 + λun−1(1 − un−1) = 0.

(15)

Writing the system in matrix-vector form we get

n2



−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 . . . 0
0 0 1

. . .
. . . 0

...
. . .

. . .
. . . −2 1

0 · · · · · · 0 1 −2





u1

u2

u3
...

un−2

un−1


+n2



ϕ(u)

0
0
...

0
0


+λ



u1(1−u1)

u2(1−u2)

u3(1−u3)
...

un−2(1−un−2)

un−1(1−un−1)


=



0
0
0
...

0
0


.

Note that we can divide through by n2 and absorb n2 into the λ. Thus, we are left
with (1).

2.3. Properties of the discrete Laplacian. Let M = −A. The main property that
is required for later arguments is the fact that M is an M-matrix. This hypothesis
is enough to imply the monotonicity discussed below. An excellent reference is
[Berman and Plemmons 1979]. M is also symmetric and positive definite, which
are more familiar properties from an introductory linear algebra class, and which
imply further nice structure for the eigenvalues and eigenvectors.

For completeness we provide elementary proofs of the properties of M that are
used later. In particular we show that M has positive distinct real eigenvalues,
λ1 < λ2 < · · · < λn−1, and that the principal eigenvalue, λ1, has an eigenvector v

whose entries are positive and convex such that vk = vn−k . We will assume in all
that follows that v has been normalized so that v1 = 1. We refer to [Weisstein;
Wikipedia] for further detail.

2.3.1. Monotonicity. A square matrix B with real entries is monotone if, for all
real vectors u, Bu ≥ 0 implies u ≥ 0.

Theorem 1. M is monotone.

Proof. We want to show that if Mu ≥ 0, then u ≥ 0. Assume

M

 u1
...

un−1

 ≥ 0.
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Let u0 = 0 and un = 0. Notice Mu ≥ 0 implies

−u0 + 2u1 − u2 ≥ 0,

−u1 + 2u2 − u3 ≥ 0,

−un−3 + 2un−2 − un−1 ≥ 0,
...

−un−2 + 2un−1 − un ≥ 0.

(16)

So we can see the pattern −uk−1 + 2uk − uk+1 ≥ 0 for k = 1, . . . , n − 1. We can
further write this as

(uk − uk−1) + (uk − uk+1) ≥ 0. (17)

Claim 1. If uk ≤ uk−1 and uk ≤ uk+1, then uk−1 = uk = uk+1.

Proof. By assumption, we have uk −uk−1 ≤ 0 and uk −uk+1 ≤ 0 but by (17) above,
these equations must strictly equal 0. Thus uk − uk−1 = 0 and uk − uk+1 = 0. □

This means that u can never be concave up.

Claim 2. Let m = min{u0, u1, . . . , un}≤ 0. Suppose uk = m for some 1 ≤ k ≤ n−1.
Then m = 0 and uk = 0 for all k.

Proof. If uk = m ≤ 0, then uk−1 = uk = uk+1 by Claim 1. We can apply Claim 1
again to uk−2 = uk−1 = uk and so on until we reach the end of the boundary,
u0 = u1 = u2. Thus we have u0 = u1 = · · · = un = 0 = m because we assumed
u0 = 0 and un = 0. Thus m = 0. □

Claim 3. If Mu ⪈ 0, then uk > 0 for k = 1, 2, . . . , n − 1.

Proof. Let m = min{u0, u1, . . . , un} ≤ 0. If uk = m ≤ 0 for any k = 1, . . . , n − 1
then m = 0 and uk = 0 for all k based on Claim 2. Then Mu = 0. But this is a
contradiction to our assumption. Hence m = 0 but only u0 = un = 0. □

Hence M is monotone. □

Theorem 2. If µ > 0 then the matrix M + µI is monotone.

Proof. Consider, Mu + µu ≥ 0. Letting u0 = un = 0 as before this means
−uk−1 + 2uk − uk+1 + µuk ≥ 0 for k = 1, . . . , n − 1, which can be written
as (uk − uk−1) + (uk − uk+1) + µuk ≥ 0. Suppose by contradiction that there
exists some uk that is the global minimum of the sequence and is a negative
value. This means uk ≤ uk−1, uk ≤ uk+1 and uk < 0. Then when we reconsider
(uk − uk−1) + (uk − uk+1) + µuk ≥ 0. We see that the values in parentheses are
nonpositive, and since we assumed uk to be negative, the third term is also negative.
But this means (uk − uk−1) + (uk − uk+1) + µuk < 0, a contradiction. Hence, the
whole sequence must be greater than or equal to 0 because we know there is no
negative minimum value. □
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2.3.2. Eigenvalues and eigenvectors. It turns out that one can be quite explicit
about the eigenvalues and eigenvectors of M if one explores a surprising and
quite interesting connection with Chebyshev polynomials of the second kind. See
[Weisstein; Wikipedia] for a wealth of information about these polynomials.

To find a real eigenvalue λ of M with eigenvector v we must solve Mv = λv.
Without loss of generality we can rescale v so that v1 = 1. Let v0 = vn = 0. It
follows that −vk−1 + 2vk − vk+1 = λvk for k = 1, . . . , n − 1. Rearranging we get
vk+1 = (2 − λ)vk − vk−1. If we let 2α = 2 − λ, then we can express the eigenvalue
problem above as a solution of the recursion relation

vk+1 = 2αvk − vk−1, v0 = 0, v1 = 1. (18)

In particular we seek solutions of (18) such that vn = 0.
The given recursion relation defines polynomials in the variable α, i.e.,

Pk(α) := vk+1,

which are known as Chebyshev polynomials of the second kind. The remaining
arguments explore a few properties of these polynomials for α in the interval [−1, 1]

and then draw conclusions about the eigenvalue problem. We note that the zeros of
vn = Pn−1(α) correspond to solutions of the eigenvalue problem. A helpful change
of variables is α = cos θ for 0 ≤ θ ≤ π .

Lemma 1. Pk(cos θ) =
sin((k + 1)θ)

sin θ
when sin θ ̸= 0.

Proof. We have P0(α) ≡ 1 so P0(cos θ) = sin((0 + 1)θ/sin θ . Assume

Pj (cos θ) =
sin(( j + 1)θ)

sin θ
, j = 1, . . . , k − 1,

when sin θ ̸= 0. Then

Pk(cos θ) = 2 cos θ Pk−1(cos θ) − Pk−2(cos θ),

= 2 cos θ
sin(kθ)

sin θ
−

sin((k − 1)θ)

sin θ
.

Also

sin((k+1)θ)

θ

=
sin(kθ)cosθ+sinθ cos(kθ)

sinθ
= cosθ

sin(kθ)

sinθ
+cos(kθ)

= cosθ
sin(kθ)

sinθ
+cos((k−1)θ)cosθ−sin((k−1)θ)sinθ

= cosθ
sin(kθ)

sinθ
+

1
sinθ

(
cos((k−1)θ)cosθ sinθ−sin((k−1)θ)sin2 θ

)
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= cosθ
sin(kθ)

sinθ
+

1
sinθ

(
cos((k−1)θ)cosθ sinθ−sin((k−1)θ)(1−cos2 θ)

)
= cosθ

sin(kθ)

sinθ
+

cosθ

sinθ

(
cos((k−1)θ)sinθ+sin((k−1)θ)cosθ

)
−

sin((k−1)θ)

sinθ

= cosθ
sin(kθ)

sinθ
+

cosθ

sinθ
(sin(kθ))−

sin((k−1)θ)

sinθ
= 2cosθ

sin(kθ)

sinθ
−

sin((k−1)θ)

sinθ
.

Hence combining the results above gives

Pk(cos θ) =
sin((k + 1)θ)

sin θ
. □

It follows from this lemma that Pk(α) = 0 for α = cos( jπ/(k + 1)) with j =

1, . . . , k. Applying this to k = n−1 leads to the eigenvalues λ j = 2(1−cos( jπ/n))

for j = 1, . . . , n−1. Since M is an (n−1)×(n−1) matrix, this must be a complete
list of the n − 1 simple eigenvalues for M.

The principal eigenvalue for M is given by λ1 = 2(1 − cos(π/n)). For any
k < n − 1 we have that the entries of the principal eigenvector are

vk+1 = Pk

(
cos

(
π

n

))
=

sin((k + 1)π/n)

sin(π/n)
.

The positivity, symmetry, and concavity of v all follow.

2.4. Basic existence theorem using sub- and supersolutions. A classic reference
for monotonicity methods, which we adapt for discrete problems, is [Sattinger
1972]. For notational convenience in stating and proving the following theorem,
we let h(u) := φ(u) + λ f (u). Also, in this section we use (u( j)) to represent a
sequence of vectors in Rn−1.

Definition. We say that u ∈ Rn−1 is a supersolution of (1) if Au + h(u) ≤ 0. We
say that u ∈ Rn−1 is a subsolution if Au + h(u) ≥ 0.

Theorem 3. Let u and u be sub- and supersolutions, respectively, for problem (1)
such that u ≤ u. Then there exists a solution u ∈ Rn−1 for (1) such that u ≤ u ≤ u.

Proof. Let us examine a special case where h : Rn−1
→ Rn−1 is nondecreasing and

continuous. Recall that −A is monotone, so if −Au ≥ 0, then u ≥ 0.
Let u(0)

= u and consider the recurrence formula

Au(1)
+ h(u(0)) = 0,

Au(2)
+ h(u(1)) = 0,

...

Au( j)
+ h(u( j−1)) = 0,

Au( j+1)
+ h(u( j)) = 0,

and so on. We know that A is invertible so these equations are uniquely solvable.
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We argue by induction that our sequence is bounded. We assumed u(0)
=

u ≤ u, so let us assume u( j)
≤ u and prove u( j+1)

≤ u. We have A(u − u( j+1)) ≤

−h(u)+ h(u( j)) and notice once we multiply by a negative, the sign will switch:
−A(u − u( j+1)) ≥ (h(u) − h(u( j))); this last relation is greater than or equal to 0
because we assumed u( j)

≤ u and that h is nondecreasing. Therefore, u−u( j+1)
≥ 0,

which implies u ≥ u( j+1).
We argue inductively that the sequence of vectors (u( j)) is monotone. Notice

that
A(u(1)

− u(0)) = −h(u(0)) − Au(0)
= −(h(u) + Au) ≤ 0.

Therefore −A(u(1)
− u(0)) ≥ 0 and by monotonicity u(1)

≥ u(0). Assume u(0)
≤

u(1)
≤ · · · ≤ u( j) for some j ∈ N. Now, we want to examine u( j+1) with our

recurrence formula. We have Au( j+1)
+ h(u( j)) = 0 and we consider

A(u( j+1)
− u( j)) = −h(u( j)) + h(u( j−1)).

Thus, if we consider the negative of this equation we get

−A(u( j+1)
− u( j)) = (h(u( j)) − h(u( j−1))) ≥ 0

by our second assumption. Therefore, u( j+1)
−u( j)

≥ 0, which implies u( j)
≤ u( j+1).

Hence, u(0)
≤ u(1)

≤ · · · ≤ u( j)
≤ u( j+1). Thus, we have shown our sequence, (u( j)),

is monotone.
We have shown (u( j)) is monotonically nondecreasing and is bounded above. By

the monotone convergence theorem, applied componentwise, we see u( j)
→ u. So,

as j → ∞ in Au( j)
+ h(u( j−1)) = 0 we then have Au + h(u) = 0 with u ≤ u ≤ u,

where we have used the continuity of A and h.
Now consider if h(u) = φ(u) + λ f (u), which is not monotone. Recall that φ is

nondecreasing for both cases of interest in this paper. Let M the maximum entry
of u. Choose µ ≥ 2M − 1. It follows that x(1 − x) + µx is nondecreasing on
(−∞, M]. It follows that fµ(u) := f (u) + µu is nondecreasing for all u such that
u ≤ u. Hence hµ(u) := φ(u) + λ fµ(u) is nondecreasing for all u such that u ≤ u.

Consider Au + h(u) = 0. If we add and subtract µu we can manipulate our
equation into (A − µI )u + (h(u) + µu) = 0, which becomes Aµu + hµ(u) = 0,
where −Aµ := −A + µI is monotone, and hµ(u) is monotone increasing for
u ≤ u. Moreover it is easy to check that u and u are sub- and supersolutions of
Aµu +hµ(u) = 0. By the argument above, this equation has a solution, u, such that
u ≤ u ≤ u, which is clearly also a solution of A(u) + h(u) = 0. □

3. The main results

3.1. Nonlinear boundary condition. In this section we assume the boundary con-
ditions un = 0 and u0 = ϕ(u1), where ϕ satisfies (11) as a consequence of (9).
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Recall that our desired solution should be nonnegative and in particular we need
u1 ≥ d/n > 0 so that u0 = ϕ(u1) ≥ 0.

Consider u = cv, where Av = −λ1v and c > 0. Given the properties of v

discussed earlier we know that we can scale v to make sure the first and last terms
in the vector are 1. Thus,

v =

1
...

1

 ,

where the rest of the terms are values greater than 1. For later reference we choose
m ∈ {2, . . . , n −2} such that vm = max{v1, . . . , vn−1} = max{v2, . . . , vn−2}. Then

Au + φ(u) + λu(1 − u) =


−cλ1 + ϕ(c) + λc(1 − c)
−cv2λ1 + λv2c(1 − v2c)

...

−cvn−2λ1 + λvn−2c(1 − vn−2c)
−cλ1 + λc(1 − c)

 . (19)

How can c > 0 be chosen to create a subsolution? We require each entry in the
vector above to be nonnegative. For k = 2, 3, . . . , n − 1 we require

−cvkλ1 + λvkc(1 − vkc) ≥ 0 or − λ1 + λ(1 − vkc) ≥ 0. (20)

If c ≥ 1/vk , then the given expression is negative, so we require c < 1/vk for each k.
Thus c < 1/vm < 1. From above we also know that we require c ≥ d/n so that
u1 = cv1 = c ≥ d/n. Solving for λ we get

λ ≥
λ1

1 − cvk

for k = 2, . . . , n − 1. This inequality will be true for all k if it is true just for m,
thus we have the conditions

λ ≥
λ1

1 − cvm
and

d
n

≤ c <
1
vm

. (21)

For k = 1 we require
−cλ1 + ϕ(c) + λc(1 − c) ≥ 0.

Since we are already requiring c < 1, we can solve for λ to get

λ ≥
cλ1 − ϕ(c)

c(1 − c)
.

For c ≥ d/n we have ϕ(c) ≥ 0, so

cλ1 − ϕ(c)
c(1 − c)

≤
λ1

1 − c
≤

λ1

1 − cvm
.
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Hence condition (21) will also guarantee that the first component in (19) is non-
negative. The smallest value of λ that can satisfy the given inequality for the given
range of c is

λ∗
:=

λ1

1 − (d/n)vm
.

For any λ ≥ λ∗ we can solve (21) for the largest c that gives a subsolution, which is

c =
1
vm

(
1 −

λ1

λ

)
.

We conclude that for all λ ≥ λ∗ we have a subsolution

u =
1
vm

(
1 −

λ1

λ

)
v.

How can we choose c > 0 to create a supersolution? In this case each entry on
the right hand side of (19) must be nonpositive. For k = 1 we have

−cλ1 + ϕ(c) + λc(1 − c) ≤ 0. (22)

Since we eventually want the supersolution to be larger than the subsolution we
know c ≥ d/n. We also know ϕ(d/n) = 0 and ϕ′(c) ≤ 1, so ϕ(c) ≤ c − d/n ≤ c.
This means that (22) will be satisfied if

−cλ1 + c + λc(1 − c) ≤ 0,

which simplifies to
−λ1 + 1 + λ(1 − c) ≤ 0,

which is equivalent to
1 − λ1

λ
+ 1 ≤ c. (23)

Recall that λ1 ≤ 1 for n ≥ 3, so the previous inequality implies c ≥ 1. It also follows
that cvk ≥ 1 for k = 2, 3, . . . , n − 1 and thus

−λ1cvk + λcvk(1 − cvk) ≤ 0

for k = 2, 3, . . . , n − 1. Hence for any λ ≥ λ∗ we have that

u =

(
1 − λ1

λ
+ 1

)
v

is a supersolution.
Finally, it is clear that

1
vm

(
1 −

λ1

λ

)
< 1 <

(
1 − λ1

λ
+ 1

)
,

so u < u. We have proved the following.
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Figure 4. The blue region represents (c, λ) for subsolutions, and
the pink (c, λ) for supersolutions. The blue region is bounded by
c = d/n and λ = λ1/(1 − cvm) with an asymptote of c = 1/vm . The
pink region is bounded by λ = (1−λ1)/(c−1) with asymptote c = 1.

Theorem 4. Let A represent the (n−1)-dimensional discrete Laplacian for n ≥ 3.
Let f represent the (n−1)-dimensional vector valued logistic function. Let g
satisfy (9), and let ϕ be the inverse of G(u) = u + g(u)/n. Let λ1 be the principal
eigenvalue of −A and let v represent the positive principal eigenvector of −A which
is scaled so that v1 = vn−1 = 1. Let vm := max{v2, . . . , vn−2}. Assume d/n < 1/vm .
Let

λ∗
=

λ1

1 − vm(d/n)
.

Then for every λ ≥ λ∗ equation (1) has a solution, u, such that

1
vm

(
1 −

λ1

λ

)
v ≤ u ≤

(
1 − λ1

λ
+ 1

)
v.

We illustrate the possible choices for (c, λ) to produce subsolutions and superso-
lutions in Figure 4.

3.2. Linear nonlocal boundary condition. In this section we assume un = 0
and −n(u1 − u0) = −g(u), where g and ϕ are given by (12) and (13). We also
assume (14).

Observe that

ϕ(cv) =
n

n+a0

(
c(1 −

1
n
⟨a, v⟩) −

d
n

)
=

1
n+a0

(c(n − ⟨a, v⟩) − d),

which is a linear real-valued function of c with slope σ = (n −⟨a, v⟩)/(n +a0) > 0,
ϕ(0) = −d/(n + a0) < 0, and ϕ(dv/(n − ⟨a, v⟩)) = 0. It follows that the graph of
ϕ(cv) is an upward sloping line with negative intercept on the vertical axis, and
positive intercept on the horizontal axis.
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Consider first the condition 0 ≤ u0 = ϕ(cv). This leads to

c(n − ⟨a, v⟩) − d ≥ 0,

and thus

c ≥
d

n − ⟨a, v⟩
> 0. (24)

For notational convenience let dn := d/(n − ⟨a, v⟩).
How do we choose c ≥ dn so that u = cv is a subsolution? Once again we require

every element of (19) to be nonnegative. For k = 2, . . . , n − 1 this is exactly as in
the previous section so we require dn < 1/vm , and

λ >
λ1

1 − cvm
for dn ≤ c <

1
vm

< 1.

Let λ∗
:= λ1/(1 − dnvm).

For k = 1 we require, as before,

−cλ1 + ϕ(cv) + λc(1 − c) ≥ 0.

Solving for λ yields

λ ≥
cλ1 − ϕ(cv)

c(1 − c)
.

For c ≥ dn we have ϕ(cv) ≥ 0 so

cλ1 − ϕ(cv)

c(1 − c)
≤

cλ1

c(1 − c)
=

λ1

1 − c
≤

λ1

1 − cvm
.

Hence the condition

λ ≥
λ1

1 − cvm

implies

λ ≥
cλ1 − ϕ(cv)

c(1 − c)
.

As a result of the inequalities above we know that for any λ ≥ λ∗ we can choose
c = (1/vm)(1 − λ1/λ) to get a subsolution u = cv.

For λ ≥ λ∗, as above, how can we choose c so that u = cv is a supersolution? A
simple first choice is c ≥ 1, which immediately guarantees that the k = 2, . . . , n −1
entries of (19) are nonpositive. Thus we are left to consider k = 1, i.e.,

−cλ1 + ϕ(cv) + λc(1 − c) ≤ 0

for c ≥ 1. We know that ϕ(cv) ≤ σc, so it suffices to choose c such that

−cλ1 + σc + λc(1 − c) ≤ 0.
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Solving for positive c gives

c ≥ 1 +
σ − λ1

λ
.

Hence if c = max{1, 1+ (σ −λ1)/λ}, then u = cv is a supersolution. It is clear that

1
vm

(
1 −

λ

λ1

)
< 1 ≤ max

{
1, 1 +

σ − λ1

λ

}
,

so u < u.
Thus we have proved the following theorem.

Theorem 5. Let A represent the (n−1)-dimensional discrete Laplacian for n ≥ 3.
Let f represent the (n−1)-dimensional vector-valued logistic function. Let g and ϕ

be defined by (12) and (13), respectively, and assume (14). Let λ1 be the principal
eigenvalue of −A and let v represent the positive principal eigenvector of −A which
is scaled so that v1 = vn−1 = 1. Let

vm := max{v2, . . . ,vn−2}, dn :=
d

n−⟨a,v⟩
, σ :=

n−⟨a,v⟩

n+a0
, λ∗

:=
λ1

1−dnvm
.

Assume dn < 1/vm . Then for every λ ≥ λ∗ equation (1) has a solution, u, such that

1
vm

(
1 −

λ1

λ

)
v ≤ u ≤ max

{
1, 1 +

σ − λ1

λ

}
v.

4. Examples

In the following examples we assume n = 4. It follows that λ1 = 2 −
√

2 and

v =

 1
√

2
1

 .

4.1. Nonlinear boundary condition. Let us consider the conditions un = 0 and
−n(u1 − u0) = −g(u0), with g(u) =

√
u + 1. It is a straightforward exercise to

check that g satisfies (9). We can even solve explicitly for

ϕ(u) = u +
1
32

−

√
64 u + 65

32
. (25)

It follows that

d = 1, vm =
√

2, and λ∗
=

2 −
√

2

1 −
√

2/4
≈ 0.91. (26)

Observe that
d
n

=
1
4

<
1

√
2

=
1
vm

.
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Choose, for example, λ = 2 > λ∗. Then

lu =
v

2
and u =

(
1 +

√
2

√
2

)
v. (27)

Thus we can apply Theorem 4 to get a solution, u, of (1) such that

v

2
≤ u ≤

(
1 +

√
2

√
2

)
v.

To finish describing the solution we use the boundary conditions to determine that
u4 = 0 and u0 = ϕ(u1). Since v1 = 1 we know that 1

2 ≤ u1 ≤ ((1 +
√

2)/
√

2). We
also know that ϕ is monotone increasing, so ϕ

( 1
2

)
≤ u0 ≤ ϕ((1 +

√
2)/

√
2). Using

the formula above we get approximately 0.22 ≤ u0 ≤ 1.33.

4.2. Nonlocal boundary condition. Now consider the conditions un = 0 and
−n(u1 − u0) = −g(u), with g(u) =

1
2 u0 −

1
4 u1 −

1
8 u2 −

1
16 u3 + 1. This would

model a population whose probability of crossing the boundary x = 0 depends
on the entire population distribution, but with less influence as distance from the
boundary increases. It follows that

d = 1, vm =
√

2, a0 =
1
2
,

a = −

(1
4
,

1
8
,

1
16

)
, ⟨a, v⟩ = −

( 5
16

+

√
2

8

)
≈ −.49,

dn =
16

69 + 2
√

2
≈ .22, λ∗

=
−134 + 65

√
2

14
√

2 − 69
≈ .86, σ =

23
24

+

√
2

36
≈ .998.

(28)

Observe that dn < 1/vm , n + a0 > 0 and ⟨a, v⟩ < n.
Choose, for example, λ = 2. Then

1
vm

(
1 −

λ1

λ

)
=

1
2
, and max

{
1, 1 +

σ − λ1

λ

}
=

23
48

+
37

√
2

72
≤ 1.21.

Thus we can apply Theorem 5 to get the solution, u, of (1) such that
v

2
≤ u ≤ 1.21v.

4.3. Computation. In this section we demonstrate how the solutions in the examples
above can be approximated using a simple algorithm justified by the proof of
Theorem 3. The purpose is simply to illustrate previous results and not provide a
best possible computational scheme. We consider once again the first example above.

The first step is to modify f (u) so that it is monotone on an interval (−∞, M],
where M is the maximum entry of u. It is easy to check that M ≤ 3. On this interval
we have f ′(u)= 1−2u ≥−5, so f5(u) := f (u)+5u is monotone nondecreasing on
(−∞, 3]. We know that φ(u) is increasing, so h5(u) = φ(u)+λ f5(u), is increasing.
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Now we apply the monotone iteration scheme to

(A − 10I )u + φ(u) + 2 f5(u) = 0,

i.e., u(0)
= u = v/2 and

(A − 10I )u( j+1)
+ φ(u( j)) + 2 f5(u( j)) = 0

for n = 0, 1, 2, . . . , 20. Note that A − 10I = A − λ5I . The first and last iterates in
this computation are

u(0)
=

 0.5
0.7071067810

0.5

 ,

u(1)
=

0.536255893875059
0.711597532800704
0.517633127733392

 ,

u(2)
=

0.569589664351000
0.719076398251377
0.532898818433164

 ,

...

u(18)
=

0.805305316997942
0.841375090990183
0.639281108220394

 ,

u(19)
=

0.809176054165159
0.844281463851946
0.641524507653473

 ,

u(20)
=

0.812508968309087
0.846813682192274
0.643500032182824

 .

We used Maple to do the computations. We see that the vectors are increasing and
approaching a solution u ≈ u(20). We can add in the boundary components of u by
recalling that u4 = 0 and u0 = φ(u1) ≈ φ(0.81) ≈ 0.50.

5. Conclusion

Using monotonicity methods we were able to find nonnegative solutions to (1) with
two different nontrivial boundary conditions of importance to applications.

For possible future research questions consider the following. Basic issues of
uniqueness, multiplicity, and stability remain to be explored. In the case of multiple
solutions, determining the shape and asymptotic properties of bifurcation curves



84 CARSON RODRIGUEZ AND STEPHEN B. ROBINSON

would be of interest. Establishing the convergence of discrete solutions to continuous
solutions as n →∞ would be of interest. A good reference for this last question, and
other interesting computational issues, is [Lewis et al. 2022]. Pairing the boundary
conditions with other biologically interesting choices of f (u), as in [Cantrell and
Cosner 2007; Ashley et al. 2013; Goddard and Shivaji 2017] would be interesting.
Finally, combining elements of the two different problems discussed above would
be a good direction for further study, i.e., nonlinear nonlocal boundary conditions.
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Edge-determining sets and determining index
Sally Cockburn and Sean McAvoy

(Communicated by Anant Godbole)

A graph automorphism is a bijective mapping of the vertices that preserves
adjacent vertices. A vertex-determining set of a graph is a set of vertices such
that the only automorphism that fixes those vertices is the identity. The size of
a smallest such set is called the determining number, denoted by Det(G). The
determining number is a parameter of the graph capturing its level of symmetry.
We introduce the related concept of an edge-determining set and determining
index, Det′(G). We prove that Det′(G)≤ Det(G)≤ 2 Det′(G) when Det(G) ̸= 1
and show both bounds are sharp for infinite families of graphs. Further, we
investigate properties of these new concepts, as well as provide the determining
index for several families of graphs, including hypercubes.

1. Introduction

We focus solely on finite, simple graphs, G = (V, E), using standard terminology
and notation, as can be found in [Chartrand and Zhang 2012]. A definition of
particular interest for this paper is that an automorphism of a graph is a permutation
of the set of vertices that respects vertex adjacency. The set of all automorphisms
of a graph under the operation of composition forms a group, denoted by Aut(G).

Graph theorists often try to categorize graphs by their level of symmetry. Graphs
with vertices or edges that are interchangeable display one such type of symme-
try. More precisely, a graph is vertex-transitive if, for all u, v ∈ V (G), there
exists φ ∈ Aut(G) such that φ(u) = v. Edge-transitivity and arc-transitivity are
defined similarly. Additionally, we will call a graph edge-flip-invariant if, for all
{u, v} ∈ E(G), there exists φ ∈ Aut(G) such that φ(u) = v and φ(v) = u. In
Section 2, we will show that for connected graphs, edge-flip-invariance is a stronger
condition than vertex-transitivity.

The determining number of a graph is another measure of its symmetry. The
motivation is to find the least number of vertices that need to be fixed to break all
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of the symmetries of a graph. Intuitively, the more vertices that need to be fixed,
the more symmetric the graph is.

Definition 1. A vertex subset S of a graph is a vertex-determining set if the only
automorphism φ ∈ Aut(G) that satisfies φ(u) = u for all u ∈ S is the identity
automorphism. The determining number of G, Det(G), is the size of a smallest
such set: Det(G)= min{|S| : S is a vertex-determining set}.

Some authors use the term fixing number for this parameter (see [Erwin and
Harary 2006; Gibbons and Laison 2009]), but we will continue to refer to it as the
determining number. Another way to break the symmetries of a graph is to assign
a color to each vertex in such a way that otherwise interchangeable vertices can
be distinguished. (Notice that this need not be a proper vertex coloring, in which
adjacent vertices must be assigned different colors.)

Definition 2. The distinguishing number of a graph G, Dist(G), is the minimum
number of vertex colors required so that the only automorphism φ ∈ Aut(G) that
preserves all vertex colors is the identity automorphism.

Albertson and Boutin [2007] established a relationship between the determining
number and distinguishing number.

Proposition 3 [Albertson and Boutin 2007, Theorem 3]. We have Dist(G) ≤

Det(G)+ 1 for all graphs G.

The idea behind the proof is that the vertices of a minimum vertex-determining
set can be colored with Det(G) distinct colors, and all other vertices with another
color. Since the only automorphism that fixes the vertices of the vertex-determining
set is the identity, this will be a distinguishing coloring with Det(G)+ 1 colors.

Kalinowski and Pilśniak [2015] introduced the distinguishing index, based on
coloring edges instead of vertices.

Definition 4. The distinguishing index of a graph G, Dist′(G), is the minimum
number of edge colors so that the only automorphism φ ∈ Aut(G) that preserves
all edge colors is the identity automorphism.

There has been further recent research on the distinguishing index; see for
example [Alikhani and Soltani 2020a; Imrich et al. 2020; Lehner et al. 2020].
Motivated by this work, in this paper we extend the concept of determining set
from vertices to edges.

One complication is the following. An automorphism φ ∈ Aut(G) fixes an edge
e = {u, v} ∈ E(G) if φ(e)= e, which means {φ(u), φ(v)} = {u, v}. In this case, φ
either fixes the endvertices (φ(u) = u and φ(v) = v) or switches the endvertices
(φ(u)= v and φ(v)= u). The following elementary observations will be useful in
our investigation.
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Observation 5. Let e1, e2 be adjacent edges in a graph G. If φ ∈ Aut(G) fixes
both e1 and e2, then φ fixes the endvertices of e1 and e2.

Observation 6. Let e = {u, v} be an edge in graph G such that deg(u) ̸= deg(v).
If φ ∈ Aut(G) fixes e, then φ fixes the endvertices of e.

The open neighborhood N (v) of a vertex v is the set of all neighbors of v;
the closed neighborhood of v is N [v] = {v} ∪ N (v). Distinct vertices u and v are
called nonadjacent twins (respectively, adjacent twins) if N (u)= N (v) (respectively,
N [u] = N [v]).

Observation 7. If u, v are adjacent or nonadjacent twins in a graph G, then there
exists φ ∈ Aut(G) such that φ(v)= u, φ(v)= u, and φ fixes all the other vertices.

Any two isolated vertices in a graph G will be nonadjacent twins, so there exists
an automorphism switching them and leaving all other vertices fixed. This nontrivial
automorphism fixes all edges of G. Similarly, if there is a K2 component of G, then
its endvertices are adjacent twins. The automorphism switching the endvertices of
this component and leaving all other vertices fixed is a nontrivial automorphism
that fixes every edge in the graph. In both of these situations, it is not possible to
define an edge equivalent of the determining number. With these considerations in
mind, we make the following definition.

Definition 8. Let G be a graph with no more than one isolated vertex and without
K2 as a component. An edge subset T of G is an edge-determining set if the only
φ ∈ Aut(G) that satisfies {φ(u), φ(v)} = {u, v} for all {u, v} ∈ T is the identity
automorphism. The determining index, Det′(G), is the size of the smallest such set:
Det′(G)= min{|T | : T is an edge-determining set}.

In other words, T is an edge-determining set if fixing every edge of T fixes every
vertex of the graph. If G is an asymmetric graph, meaning it has no nontrivial
automorphisms, then both Det(G) = 0 and Det′(G) = 0. Due to the novelty of
an edge-determining set, previous authors have referred to a vertex-determining
set as simply a determining set. Henceforth, we will indicate clearly whether a
determining set consists of edges or vertices.

The determining index of a disconnected graph is not as simple as the sum of the
determining index of each of its connected components. For example, if G is the
union of two isomorphic, asymmetric, connected graphs, then the determining index
is 0 for each connected component, but Det′(G)= 1, because there is a nontrivial
automorphism switching the two components.

Erwin and Harary [2006] observed the corresponding result for determining
number of disconnected graphs.
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1 2

34

1 2

34

1 2

34

G1 G2 G3

Figure 1. Exceptions to Aut(G)∼= Aut(L(G)).

Proposition 9 [Erwin and Harary 2006, Observation 1]. Let G = H1 ∪ · · · ∪ Hk ,
where Hi is a connected component of G. Let

P = {Hi : Det(Hi ) > 0}, Q = {Hi : Det(Hi )= 0}

and let R be the set of isomorphism classes of graphs in Q. Then

Det(G)= |Q| − |R| +

∑
H∈P

Det(H).

An analogous result holds for the determining index.

Lemma 10. Let G = H1 ∪ · · · ∪ Hk , where Hi is a connected component of G, at
most one Hi = K1, and no Hi = K2. Let

P = {Hi : Det′(Hi ) > 0}, Q = {Hi : Det′(Hi )= 0}

and let R be the set of isomorphism classes of graphs in Q. Then

Det′(G)= |Q| − |R| +

∑
H∈P

Det′(H).

Proof. If Hi ∈ P, then clearly we need to fix Det′(Hi ) edges to fix all vertices of Hi .
If Hi ∈ Q, then, for all H j ∈ Q such that i ̸= j and Hi ∼= H j , there exists an

automorphism of G that interchanges the vertices of these two components. Let k
be the number of connected components in the isomorphism class of Hi . We need
to fix at least k − 1 of these components. Fix one edge of each of the components
in the isomorphism class of Hi except one. Then the vertices of all the components
in the isomorphism class of Hi are fixed. We need to do this procedure for each
distinct isomorphism class in Q. Thus, Det′(G)= |Q| − |R| +

∑
H∈P Det′(H). □

A useful tool for investigating connections between vertex properties and edge
properties of a graph is the line graph. The line graph of a graph G is the graph L(G)
such that V (L(G)) = E(G), with vertices e1 = {u, v} and e2 = {x, y} in L(G)
being adjacent if the corresponding edges are adjacent in G. It is easy to verify that
an automorphism α of G induces an automorphism α′ of L(G) in the obvious way;
for all e = {u, v} ∈ V (L(G)), define α′(e)= {α(u), α(v)}. Sabidussi [1961] proved
that except for the three cases shown in Figure 1, these induced automorphisms
make up the entire automorphism group of L(G).
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Proposition 11 [Sabidussi 1961, Theorem 5.3]. Let G be a connected graph such
that |V (G)| ≥ 3. If G /∈ {G1,G2,G3}, then Aut(G)∼= Aut(L(G)).

Alikhani and Soltani established a relationship between the distinguishing index
of a graph and the distinguishing number of the corresponding line graph.

Proposition 12 [Alikhani and Soltani 2020b, Theorem 2.3]. If G is a connected
graph such that |V (G)| ≥ 3 and G ̸= G2, then Dist′(G)= Dist(L(G)).

Using Proposition 11, we establish a relationship, similar to that of Proposition 12,
between the determining index of a graph and the determining number of the
corresponding line graph.

Theorem 13. Let G be a connected graph such that |V (G)| ≥ 3. Then Det′(G)=

Det(L(G)) if and only if G /∈ {G1,G2,G3}.

Proof. Assume G /∈ {G1,G2,G3}. We will first show Det′(G)≥ Det(L(G)). Let T
be a minimum edge-determining set of G so that Det′(G)= |T |. Then T is a set of
vertices in L(G). Let α be an automorphism of L(G) such that α(v)=v for all v∈ T.
By Proposition 11, there exists an isomorphism φ : Aut(G)→ Aut(L(G)), so there
exists σ ∈ Aut(G) such that φ(σ) = α. Hence, for all edges e = {u, v} ∈ E(G),
α(e) = {σ(u), σ (v)}. But since α(e) = e for all e ∈ T, {σ(u), σ (v)} = {u, v}
for all {u, v} ∈ T. Since T is an edge-determining set in G, σ is the identity
in Aut(G). Hence, α is the identity in Aut(L(G)). By definition, T is a vertex-
determining set in L(G). Since T is of minimum size as an edge-determining set,
Det′(G)≥ Det(L(G)).

We will now show Det(L(G))≥Det′(G). Let S be a minimum vertex-determining
set of L(G) so that Det(L(G))= |S|. Then S is a set of edges in G. Let τ ∈ Aut(G)
such that {τ(u), τ (v)} = {u, v} for all {u, v} ∈ S. By Proposition 11, there is
a unique β ∈ Aut(L(G)) such that φ(τ) = β. Then, for all e = {u, v} ∈ S,
β(e) = {τ(u), τ (v)} = {u, v} = e. Since S is a vertex-determining set in L(G),
β is the identity automorphism of L(G). Since φ : Aut(G) ∼= Aut(L(G)) is an
isomorphism, the only element of ker(φ) is the identity automorphism of G. Thus,
τ is the identity and so S is an edge-determining set of G. Since S is of min-
imum size as a vertex-determining set of L(G), Det′(G) ≤ Det(L(G)). Hence,
Det′(G)= Det(L(G)).

Conversely, assume G ∈ {G1,G2,G3}. By inspection, we have Det′(G1) =

Det′(G2)= 1 and Det′(G3)= 2. For the determining number of their line graphs,
shown in Figure 2, we have Det(L(G1))= 2, Det(L(G2))= 2, and Det(L(G3))= 3.
Hence, if G ∈ {G1,G2,G3}, then Det′(G) ̸= Det(L(G)). □

With the connection between G and L(G), we now have a tool to find the
determining index, if the determining number of the line graph is known.
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Figure 2. Line graphs to the exceptions.

Theorem 14. For all n > 2, Det′(Pn) = 1 and Det′(Cn) = 2, and, for all n > 1,
Det′(K1,n)= n − 1.

Proof. Note that Pn−1 = L(Pn), Cn = L(Cn), and Kn = L(K1,n). The determining
numbers of paths, cycles and complete graphs follow easily from the definition; for
n > 2, Det(Pn−1) = 1 and Det(Cn) = 2, and, for n > 1, Det(Kn) = n − 1. Now
apply Theorem 13. □

We can easily establish a similar relationship between the distinguishing index and
the determining index to that between the distinguishing number and determining
number in Proposition 3.

Theorem 15. Let G be a connected graph such that |V (G)| ≥ 3. Then Dist′(G)≤

Det′(G)+ 1.

Proof. We first cover the special cases by inspection. If G =G1, we have Dist′(G1)=

1 ≤ 2 = Det′(G1)+ 1. If G = G2, we have Dist′(G2)= 1 ≤ 2 = Det′(G2)+ 1. If
G = G3, we have Dist′(G3)= 3 = Det′(G3)+ 1. If G ̸= G1, G2, or G3, then, by
Propositions 3 and 12,

Dist′(G)= Dist(L(G))≤ Det(L(G))+ 1 = Det′(G)+ 1. □

2. Comparing determining number and determining index

In this section, we discuss general relationships between the determining index
and determining number. One important difference between these parameters is
that while Det(G) = Det(G), where G is the complement of G, the same is not
always true for the determining index. This can be because the determining index
is undefined for the complement.

Example 16. By Theorem 14, Det′(C3)= 2. However, Det′(C3) is undefined as
the number of isolated vertices is 3.
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Figure 3. Comparing Det(G) and Det′(G) on P4.

However, this is not always a result of Det′(G) being undefined.

Example 17. By Theorem 14, Det′(K1,5) = 4. However, K1,5 = K5 ∪ K1, so
Det′(K1,5) = 3. With only one isolated vertex, the edge-determining index of
K1,5 = K5 ∪ K1 is still defined.

By Theorem 13, knowing when Det′(G)=Det′(G) can be viewed as a problem of
knowing when Det(L(G))= Det(L(G)). Alternatively, we can ask when Det(G)=
Det′(G) and Det(G)= Det′(G) as Det(G)= Det(G). If G is self-complementary,
then the equality clearly holds.

Kalinowski and Pilśniak [2015] showed that Dist′(G) ≤ Dist(G)+ 1 for any
graph G. It is natural to expect that there is a similar relationship between the
determining index and the determining number of a graph. Before establishing
a connection, we present some examples displaying the subtleties of construct-
ing an edge-determining set from a given vertex-determining set. For a given
vertex-determining set S, it seems reasonable to believe that we can construct a
corresponding edge-determining set by picking one edge incident to each vertex
in S. In Figure 3, left, the gray vertex constitutes a determining set, but the incident
bold edge fails to constitute an edge-determining set. However, Figure 3, right,
shows that the other incident edge does constitute an edge-determining set. In this
example, Det(P4)= Det′(P4)= 1.

The example of P4 fails to highlight all possible difficulties in selecting edges
incident to vertices. While the edge we chose mattered, there was an obvious
one. The endvertices of {3, 4} have different degrees, so fixing that edge will
fix its endvertices by Observation 6. The choice is less obvious in a graph with
more symmetry, such as the “envelope” graph H in Figure 4, which is both vertex-
transitive and edge-flip-invariant.

For this example, it is easily verified that {3, 5} is a minimum vertex-determining
set, so Det(H) = 2. In Figure 4, left, the bold edges fail to constitute an edge-
determining set because the reflection across a central vertical line in the drawing
is an automorphism that flips edges {3, 4} and {5, 6} (and {1, 2}, in fact). However,
Figure 4, right, indicates that a different choice of one incident edge per vertex can
still produce an edge-determining set. However, trying to use only the one edge
between vertices 3 and 5 won’t work because there is an automorphism that flips
this edge (as well as the edge {4, 6}). The same is true of any singleton edge set,
because H is edge-flip-invariant. Thus, Det′(H)= 2. With these nuances in mind,
we prove the following. Recall that the distance d(u, v) between vertices u and v is
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Figure 4. Comparing Det(H) (left) and Det′(H) (right).

the minimum number of edges in a u − v path; a path of minimum length is called
a u − v geodesic. As is shown in [Chartrand and Zhang 2012], any subpath of a
geodesic is also a geodesic.

Theorem 18. Let G be a connected graph such that |V (G)| ≥ 3. If Det(G) ̸= 1,
then Det′(G)≤ Det(G).

Proof. Let S={s1, . . . ,sk} be a minimum vertex-determining set of G such that k>1.
First suppose all the vertices of S are pairwise adjacent. Then there exists a

path P such that V (P)= S. Let T be the edges of P, so that |T | = k − 1. If k = 2,
there exists an edge e adjacent to {s1, s2}, since G is connected with |V (G)| ≥ 3.
In this case, we add e to T to create an edge set of size k = 2. Assume φ ∈ Aut(G)
fixes the edges of T. Let {u, v}, {v,w} ∈ T be adjacent edges. By Observation 5,
if two adjacent edges are fixed, then the endvertices of those edges are fixed. Thus,
φ(u) = u, φ(v) = v, φ(w) = w. Working our way along the adjacent edges
of path P, we can conclude that all the endvertices of the edges of T are fixed.
Therefore, φ(s)= s for all s ∈ S and so Det′(G)≤ Det(G)= k.

Now suppose not all of the vertices are pairwise adjacent. Then by renum-
bering the vertices in S if necessary, we can assume d(s1, s2) ≥ 2. Let P =

{s1, u1, . . . , u2, s2} be an s1 − s2 geodesic. Note that it is possible for u1 = u2. We
will inductively construct an edge-determining set consisting of edges incident to
vertices of S. We start with the two edges e1 = {s1, u1} and e2 = {s2, u2}. Let
T2 = {e1, e2}. Assume φ ∈ Aut(G) fixes these two edges. If u1 = u2, then the edges
are adjacent, so, by Observation 5, φ(s1)= s1 and φ(s2)= s2. Otherwise, the edges
are nonadjacent. In this case, suppose that φ flips e1 but fixes the vertices of e2.
Then φ(s1)= u1, φ(u1)= s1, and φ(s2)= s2. Since automorphisms are distance-
preserving, d(s1, s2)=d(φ(s1), φ(s2))=d(u1, s2). This contradicts our assumption
that P is a geodesic. Now suppose φ flips both e1 and e2, so that φ(s1) = u1,
φ(u1)= s1, and φ(s2)= u2. Again, since automorphisms are distance-preserving,
d(s1, s2)= d(φ(s1), φ(s2))= d(u1, u2). This also contradicts our assumption that
P is a geodesic. Thus, if φ fixes the edges of T2, then φ(s1)= s1, and φ(s2)= s2.

Next let 2 < i ≤ k and let Ti−1 = {e1, e2, . . . , ei−1} be a set of edges of the
form e j = {s j , u j }, with d(s1, u j ) < d(s1, s j ). Assume that any automorphism
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fixing every edge of Ti−1 also fixes the vertices s1, . . . , si−1. Since G is connected,
there exists a path from s1 to si . Let ei = {si , ui } such that ui is adjacent to si

on an s1 − si geodesic. Thus d(s1, ui ) < d(s1, si ). Note that it is possible that
ui = s j for some j ∈ {1, . . . , i − 1}. However, in that case it is not possible that
ei = {si , ui } = {si , s j } is already in Ti−1, because this would imply si = u j , which
in turn would imply

d(s1, s j )= d(s1, ui ) < d(s1, si )= d(s1, u j ) < d(s1, s j ).

Let Ti = Ti−1 ∪ {ei }.
Let φ ∈ Aut(G) be an automorphism of G that fixes the edges of Ti . Then φ

must fix the edges of Ti−1 and so by assumption, φ fixes s1, . . . , si . If ui = s j for
some j ∈ {1, . . . , i − 1}, then since φ(ui ) = φ(s j ) = s j = ui , it must be the case
that φ(si ) = si also. Otherwise, assume that φ flips edge ei ; that is, assume that
φ(si ) = ui and φ(ui ) = si . Then since automorphisms are distance-preserving,
d(s1, si )= d(φ(s1), φ(si ))= d(s1, ui )<d(s1, si ), a contradiction. Thus, φ(si )= si .

Finally, let T = Tk . If φ ∈ Aut(G) fixes every edge in T, then φ(si )= si for all
si ∈ S. Since S is a determining set, φ is the identity automorphism. Therefore, by
definition T is an edge-determining set. For each vertex in S, we added a distinct
edge when constructing T. Therefore, |T | = |S|. Thus, Det′(G)≤ Det(G). □

Theorem 19. Let G be a connected graph such that |V (G)| ≥ 3. Then Det(G)≤

2 Det′(G).

Proof. Let T be a minimum edge-determining set of G and let S be the set of
endvertices of the edges in T. If the edges of T are all nonadjacent, then |S| = 2|T |;
allowing for the possibility that some vertices are endvertices of two or more edges
of T means |S| ≤ 2|T | = 2 Det′(G). Let φ ∈ Aut(G) such that φ fixes the vertices
of S. Let {u, w} ∈ T. Then {φ(u), φ(w)} = {u, w}, since u, w ∈ S. Since T is an
edge-determining set, φ is the identity automorphism. Therefore, by definition, S
is a vertex-determining set. Thus, Det(G)≤ 2 Det′(G). □

If Det(G) ̸=1, then together Theorems 18 and 19 give us the inequality Det′(G)≤
Det(G) ≤ 2 Det′(G). We can algebraically rewrite this inequality to give bounds
on Det′(G) in terms of Det(G).

Corollary 20. Let G be a connected graph such that |V (G)| ≥ 3. If Det(G) ̸= 1,
then 1

2 Det(G)≤ Det′(G)≤ Det(G).

We have so far avoided the case when Det(G)= 1. In order to make claims about
Det′(G) in this case, we need to establish results about edge-flip-invariant graphs.
Recall that G is edge-flip-invariant if for all {u, v} ∈ E(G), there exists φ ∈ Aut(G)
such that φ(u)= v and φ(v)= u. We now introduce the following definition.

Definition 21. A vertex v ∈ V (G) has the neighbor-swapping property if, for all
u ∈ N (v), there exists φ ∈ Aut(G) such that φ(v)= u and φ(u)= v.
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Figure 5. x ∈ N (v) and y ∈ N (x), y ̸= v.

Clearly, all the vertices of Kn have this property. Many other symmetric graphs
have vertices with this property such as H in Figure 4, the hypercubes Qn and
cycles Cn .

Theorem 22. For a connected graph G, the following are equivalent:

(a) There exists v ∈ V (G) that has the neighbor-swapping property.

(b) Every v ∈ V (G) has the neighbor-swapping property.

(c) G is edge-flip-invariant.

In this case, G is vertex-transitive.

Proof. All statements in this theorem are clearly true if G = K1 or K2. So assume
|V (G)| ≥ 3.

Assume there exists v ∈ V (G) such that v has the neighbor-swapping property.
Let x ∈ N (v) and y ∈ N (x) such that y ̸= v, as shown in Figure 5. By assumption,
there exists α ∈ Aut(G) such that α(x)= v and α(v)= x . Then α(y) ∈ N (α(x))=
N (v). Hence, there exists z ∈ N (v) such that α(y)= z. Since v has the neighbor-
swapping property, there exists β ∈ Aut(G) such that β(z) = v and β(v) = z.
Define σ : V (G)→ V (G) by σ = α−1βα. Then σ(x)= y and σ(y)= x . Hence,
for all y ∈ N (x), there is an automorphism switching x and y. Hence, x has the
neighbor-swapping property.

Now let w ∈ V (G). Since G is connected, there exists a v − w path P =

(v, u1, . . . , uk, w). By the argument above, u1 has the neighbor-swapping property.
Similarly, since u2 ∈ N (u1), we know u2 has the neighbor-swapping property.
Continuing along the edges of the path,wmust have the neighbor-swapping property.
Thus, all the vertices of G are interchangeable with their neighbors, and so (a)
implies (b).

If G satisfies (b), then by definition, G is edge-flip-invariant.
Now assume G is edge-flip-invariant. Let v ∈ V (G) and u ∈ N (v). By definition,

there exists φ ∈ Aut(G) such that φ(u) = v and φ(v) = u. Thus, there exists
v ∈ V (G) such that v has the neighbor-swapping property, and so (c) implies (a).

Next we show that if G is connected and edge-flip-invariant, then G is vertex-
transitive. Let v,w ∈ V (G). Since G is connected, there exists a v−w path, P =

(v = u1, u2, . . . , uk = w). Since G is edge-flip-invariant, there exists φi ∈ Aut(G)
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such that φi (ui )=ui+1 and φi (ui+1)=ui for all 1≤ i ≤k. Define φ : V (G)→ V (G)
by φ = φk−1 ◦ · · · ◦φ1. Then φ(u1)= uk . Thus, G is vertex-transitive. □

The converse of Theorem 22 does not hold; that is, not all vertex-transitive graphs
are edge-flip-invariant.

Example 23. The Holt graph [1981] is the smallest graph that is vertex-transitive,
edge-transitive, but not arc-transitive. Since it is edge-transitive, if there is an
automorphism that flips any one edge, then it can be composed with other automor-
phisms to create an automorphism taking any arc to any other arc. This contradicts
the fact that it is not arc-transitive.

Now we can establish the determining index when Det(G)= 1. In this case, it is
possible that Det′(G) > Det(G).

Corollary 24. Let G be a connected graph such that |V (G)| ≥ 3 and Det(G)= 1.
Then

Det′(G)=

{
2 if G is edge-flip-invariant,
1 otherwise.

Proof. Let S = {v} be a minimum vertex-determining set of G.
If G is not edge-flip-invariant, then by Theorem 22, no vertex, including v,

has the neighbor-swapping property. Thus, there exists u ∈ N (v) such that no
automorphism interchanges u and v. Let T = {{u, v}}. Let φ ∈ Aut(G) such that
{φ(u), φ(v)} = {u, v}. Then φ(u)= u and φ(v)= v. Since the vertex of S is fixed,
φ(w) = w for all w ∈ V (G). Hence, T is a minimum edge-determining set and
Det′(G)= 1.

Now assume that G is edge-flip-invariant. By definition, there is a nontrivial
automorphism that fixes any given edge. Then clearly Det′(G) > 1. Since G is
connected with |V (G)| ≥ 3, we can find two adjacent edges e1 and e2 such that
v ∈ e1 ∪e2. Let T = {e1, e2} and assume that φ ∈ Aut(G) fixes the edges of T. Then
by Observation 5, the endvertices of the edges are fixed. Since the vertex of S is
fixed, φ(w) = w for all w ∈ V (G). Hence, T is a minimum determining set and
Det′(G)= 2. □

The following examples show that there exist graphs for both cases.

Example 25. It is well known that Det(P4) = 1, and clearly P4 is not edge-flip-
invariant. Hence, in accordance with Theorem 14 and as seen earlier, Det′(P4)= 1.

Example 26. Brooks et al. [2021] show that any automorphism fixing any vertex
of the graph G4 shown in Figure 6 will fix all other vertices of the graph. Therefore,
Det(G4)=1. We can use Theorem 22 to show the graph is edge-flip-invariant. Look-
ing at the edges incident to 0, we list the following automorphisms as permutations
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Figure 6. G4.

of the vertices (these are reflections across the dashed lines in Figure 6):

α = (0 15)(7 17)(16 8)(9 6)(1 14)(10 5)(2 13)(11 4)(3 12),

β = (0 17)(9 8)(16 1)(7 10)(15 2)(11 6)(14 3)(12 5)(13 4),

γ = (0 9)(1 17)(8 10)(16 2)(7 11)(15 3)(6 12)(14 4)(5 13).

Thus, 0 has the neighbor-swapping property. By Theorem 22, the graph is edge-
flip-invariant. By Corollary 24, Det′(G4)= 2.

3. The determining index for some families of graphs

In this section, we find the determining index for several different families of graphs.
This can give an idea of the differences between the determining index and the
determining number as well as the sharpness of the bounds in Corollary 20.

We first investigate complete bipartite graphs. It is easy to verify that Det(Kn,m)=

n + m − 2 for n ≥ m > 1.

Theorem 27. For n ≥ m > 1,

Det′(Kn,m)=

{
n − 1 if n ̸= m,
n if n = m.
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Proof. Let U ={u1, u2, . . . , un} and V ={v1, v2, . . . , vm} be the partite sets of Kn,m .
Notice that all the vertices in U are pairwise nonadjacent twins, as are all the vertices
in V.

Case 1: Assume n > m. By Observation 7, any edge-determining set T must have
at least n − 1 edges to cover n − 1 vertices in U. Let

T = {{ui , vi } : 1 ≤ i ≤ m} ∪ {{u j , vm} : m < j < n}.

Let φ ∈ Aut(G) and assume φ fixes the edges of T. Since n > m, the degrees of
the vertices in U and V are different. By Observation 6, φ must fix the endvertices
of every edge in T. We have fixed ui for 1 ≤ i < n, and hence, φ(un)= un . Since
|T | = n − 1, we have Det′(G)= n − 1.

Case 2: Assume n = m > 1. Assume there exists an edge-determining set of
size n − 1. The edges of an edge-determining set must cover n − 1 vertices in U
and n − 1 vertices in V. Hence, each edge in an edge-determining set of size n − 1
would cover a distinct vertex in V and a distinct vertex in U. By renumbering the
vertices if necessary, we can assume that T = {{ui , vi } : 1 ≤ i ≤ n − 1}. Now let
φ be the nontrivial automorphism φ(ui )= vi and φ(vi )= ui for all 1 ≤ i ≤ n − 1.
Therefore, there does not exist an edge-determining set of size n − 1.

Let T = {{ui , vi } : 1 ≤ i < n} ∪ {u1, v2}. Assume φ ∈ Aut(G) fixes the edges
of T. By Observation 5, φ(u1) = u1, φ(v1) = v1, and φ(v2) = v2. If φ fixes
one vertex in U, then φ preserves the partite sets U and V setwise. Thus, if
{φ(ui ), φ(vi )} = {ui , vi } for 1 ≤ i < n, then φ(ui )= ui and φ(vi )= vi . We have
fixed ui for 1 ≤ i < n, and hence, φ(un) = un . Similarly, we have fixed vi for
1 ≤ i < n, and hence, φ(vn)= vn . Since |T | = n, Det′(Kn,n)= n. □

Next we look at complete graphs. Recall that Det(Kn)= n − 1.

Theorem 28. For n > 2, Det′(Kn)=
⌊ 2n

3

⌋
.

Proof. Let G = Kn such that n > 2. Note all vertices are pairwise adjacent twins.
Hence, an edge-determining set of G must cover at least n − 1 vertices. Further,
if T is an edge-determining set and {u, v} ∈ T, then {v,w} ∈ T or {u, w} ∈ T for
some other w ∈ V (G). Otherwise, there exists an automorphism that switches u
and v and leaves the other vertices fixed.

Each pair of adjacent edges covers three distinct vertices. If each pair of adjacent
edges in an edge-determining set covers three distinct vertices and n = 0 (mod 3)
or n = 1 (mod 3), then these edges cover at least n − 1 vertices. If each pair
of adjacent edges in an edge-determining set covers three distinct vertices and
n = 2 (mod 3), then two twin vertices would not be covered. Hence, the edge
set would not be determining. Therefore, Det′(G) ≥ 2

⌊n
3

⌋
if n = 0 (mod 3) or

n = 1 (mod 3). Otherwise, Det′(G) > 2
⌊ n

3

⌋
.
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Let V (G)= {v1, . . . , vn} and let

T = {{vi−1, vi }, {vi , vi+1} : i = 2 (mod 3), 0< i < n}.

Then |T | = 2
⌊n

3

⌋
.

Case 1: Suppose n = 0 (mod 3). Then T covers all the vertices of G. Let
φ ∈ Aut(G) and assume φ fixes the edges in T. By Observation 5, φ(vi ) = vi ,
φ(vi−1) = vi−1, and φ(vi+1) = vi+1 for i = 2 (mod 3), 0 < i < n. Thus, T is an
edge-determining set since T covers the vertices of G. Note |T | = 2

⌊ n
3

⌋
, so T is a

minimum edge-determining set. Since n = 0 (mod 3), we have Det′(G)=
⌊ 2n

3

⌋
.

Case 2: Suppose n = 1 (mod 3). Then T covers all of the vertices of G except one.
Let φ ∈ Aut(G) and assume φ fixes the edges in T. By Observation 5, φ(vi )= vi ,
φ(vi−1)= vi−1 and φ(vi+1)= vi+1 for i = 2 (mod 3), 0< i < n. Thus, T is an edge-
determining set, since T covers every vertex of G except one. Note |T | = 2

⌊ n
3

⌋
, so

T is a minimum edge-determining set. Since n = 1 (mod 3),⌊2n
3

⌋
=

⌊2(n−1)
3

+
2
3

⌋
= 2

⌊n−1
3

⌋
= 2

⌊n
3

⌋
.

Case 3: Suppose n = 2 (mod 3). Then there exist two vertices, vn−1 and vn , not
covered by an edge in T. Thus, T is not an edge-determining set. Add edge {vn, v1}

to T. Let φ ∈ Aut(G) and assume φ fixes the edges in T. By Observation 5,
φ(vi )= vi , φ(vi−1)= vi−1 and φ(vi+1)= vi+1 for i = 2 (mod 3), 0< i < n, and
φ(v1)= v1. Thus, T is an edge-determining set, since T covers every vertex of G
except one. Note |T | = 2

⌊ n
3

⌋
+ 1, so T a minimum edge-determining set. Since

n = 2 (mod 3),⌊2n
3

⌋
=

⌊2(n−2)
3

+
4
3

⌋
= 2

⌊n−2
3

⌋
+ 1 = 2

⌊n
3

⌋
+ 1. □

The graphs Kn and Kn,m illustrate that the determining index can be strictly less
than the determining number, sometimes significantly. Further, the example of Kn,m

when n > m indicates that a minimum edge-determining set need not simply be a
cover of the vertices in a minimum vertex-determining set. Despite coming close,
neither of these families show the sharpness of the upper bound Det(G)≤ 2 Det′(G)
in Theorem 19. The following example of K4 − e indicates that the bound is sharp.



EDGE-DETERMINING SETS AND DETERMINING INDEX 99

Note there are three nontrivial automorphisms of K4 − e. One interchanges
nonadjacent twin vertices 1 and 4, leaving 2 and 3 fixed; call it α. Another inter-
changes adjacent twin vertices 2 and 3, leaving 1 and 4 fixed; call it β. A third is the
composition of these two automorphisms, α ◦β, which geometrically is a reflection
across a horizontal line through the center of the drawing. Clearly, if we fix only
one vertex, then either α or β (because the composition moves all four vertices)
fixes that vertex but moves others. Hence, we need to fix at least two vertices in
order to fix the entire graph, say vertices 1 and 2. No nontrivial automorphism fixes
both of these vertices. However, any automorphism fixing the edge {1, 2} must fix
the graph. By Observation 6, no automorphism switches these two vertices as they
have different degrees. Further, these vertices constitute a vertex-determining set, so
this edge constitutes a minimum edge-determining set. So Det(G)= 2 = 2 Det′(G).
We recall a definition that will allow us to generalize this example to an infinite
family of such graphs.

Definition 29. The join of graphs G and H is the graph G + H defined by
V (G + H)= V (G)∪ V (H) and

E(G + H)= E(G)∪ E(H)∪ {{u, v} : u ∈ G, v ∈ H}.

Theorem 30. For all n ∈N, there exists a connected graph G such that Det(G)=2n
and Det′(G)= n.

Proof. Let G = Nn+1 + Kn+1 for n ∈ N, where Nk is the empty graph on k ver-
tices. Note that K4 − e is N2 + K2. Let U = {u1, . . . , un+1} = V (Nn+1) and
V ={v1, . . . , vn+1}= V (Kn+1). By construction, the vertices of U are pairwise non-
adjacent twins and the vertices of V are pairwise adjacent twins. By Observation 7,
there exists an automorphism interchanging them and leaving all other vertices
fixed. Thus, a minimum vertex-determining set must contain n vertices of U and
n vertices of V. Since deg(u)= n+1 for u ∈ U and deg(v)= 2n+1 for v ∈ V, there
does not exist an automorphism interchanging the vertices of U with the vertices
of V. Thus, Det(G)= 2n.

Similarly, an edge-determining set must cover n vertices of U and n vertices of V.
Let T = {{ui , vi } : 1 ≤ i ≤ n}. Because there is no automorphism interchanging the
vertices of U and the vertices of V, any automorphism fixing the edges of T must fix
all their endvertices. Thus, |T | = Det′(G)= n. Therefore, Det(G)= 2 Det′(G). □

We have seen examples of infinite families such that Det′(G)= Det(G), namely
cycles and paths. We find a similar result for trees, where the determining number
and determining index can be arbitrarily large. To demonstrate this, we require a
few basic facts about trees, which can be found in any standard text on graph theory,
such as [Chartrand and Zhang 2012]. First, there is a unique path between any
two distinct vertices in a tree. Second, a vertex v in a connected graph is central if
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the maximum distance between v and another vertex in the graph is the minimum
possible; the subgraph induced by central vertices is called the center of the graph.
The center of a tree always consists either of a single vertex or a pair of adjacent
vertices, and will be contained in every longest path of the tree.

Proposition 31. The center of a tree is fixed setwise by every automorphism.

Proof. Since path lengths are fixed by automorphisms, the image of any longest
path under any automorphism φ is still a longest path. So the image of the center
under φ must still be in every longest path. If the center consists of two adjacent
vertices, it is possible that φ swaps them. □

Erwin and Harary [2006] present many interesting results about on the determin-
ing number of trees. Our result is that determining index is always the same as the
determining number.

Theorem 32. If G is a tree such that |V (G)| ≥ 3, then Det(G)= Det′(G).

Proof. If Det(G)= 0, the result is trivial. So assume Det(G)≥ 1.
As noted above, the center of G is either a single vertex or a pair of adjacent

vertices. If the center is a pair of vertices, let v be one of them. Otherwise, let v be
the center vertex.

Let T be a minimum edge-determining set of G. Because there is a unique path
between v and any other vertex, for each edge in T, one endvertex of each edge must
be more distant from v than the other. We let S be the set of more distant vertices.
Then |S| = |T | = Det′(G). To show that S is a vertex-determining set, assume
φ ∈ Aut(G) fixes every vertex in S. Let e = {x, y} ∈ T, with d(x, v) > d(y, v), so
that x ∈ S.

Case 1: If the center is just vertex v, then by Proposition 31, φ(v)= v.

Case 2: Assume there are two adjacent center vertices, u and v. Then again by
Proposition 31, {φ(u), φ(v)} = {u, v}. By assumption φ(x)= x . Suppose φ(v)= u.
Then d(x, v)= d(φ(x), φ(v))= d(x, u). However, because u and v are adjacent
and trees have no cycles, d(x, u) ̸= d(x, v). Thus, φ(v)= v.

Let w= φ(y). Since y ∈ N (x) and φ(x)= x , w ∈ N (x). Since x is more distant
from v than y, the unique x−v path in the tree G must be P = (x, y, . . . , v). Apply φ
to every vertex in this path to get P ′

= (φ(x), φ(y), . . . , φ(v)) = (x, w, . . . , v).
Since there exists a unique path between two vertices, so P = P ′. Therefore,
φ(y)= y.

We have shown that if φ fixes only the endvertex of each edge in T that is more
distant from v, then φ fixes both endvertices and hence φ fixes every edge in T.
Since T is an edge-determining set, φ must be the identity automorphism. Hence,
S is a vertex-determining set of G of size Det′(G). Hence, Det(G)≤ Det′(G). By
Corollary 20, Det(G)= Det′(G). □
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Our last result is on hypercubes. The n-dimensional hypercube, Qn , can be
defined as the graph whose vertex set is the set of ordered n-bit strings of 0s and 1s
with two vertices adjacent if they differ in exactly one bit. Hypercubes are highly
symmetric graphs; not only are they vertex-transitive and edge-flip-invariant, they
are also edge-transitive, arc-transitive and distance-transitive, meaning that given
any four vertices u, v, x and y such that d(u, v)= d(x, y), there exists an automor-
phism φ such that φ(u)= x and φ(v)= y. See [Biggs 1993]. Another definition
of hypercubes is based on the binary operation of Cartesian product of graphs.

Definition 33. The Cartesian product of graphs G and H is the graph G □ H
defined by V (G □ H)= {(u, v) : u ∈ G, v ∈ H}, with (u, v) and (x, y) adjacent if
either u = x and {v, y} ∈ E(H) or v = y and {u, x} ∈ E(G).

A graph is prime with respect to the Cartesian product if it cannot be written as
the Cartesian product of two nontrivial graphs. The prime factor decomposition of
a graph is a representation of the graph as a Cartesian product of prime graphs.

We can define Qn recursively by letting Q1 = K2 and Qn = Qn−1 □ K2 for
n ≥ 2. Thus, Qn = K2 □ · · ·□K2 is a prime factor decomposition of the hypercube.
A useful tool in finding the determining index of the hypercube is the characteristic
matrix.

Definition 34. Let S=(V1, . . . ,Vr ) be an ordered set of m-tuples. The characteristic
matrix, M(S), is the r ×m matrix with the i j -th entry being the j -th coordinate of Vi .

The characteristic matrix was used in [Boutin 2009] to prove the following
propositions.

Proposition 35 [Boutin 2009, Lemma 1]. Let G be a connected graph with prime
factor decomposition G = G1 □ · · ·□Gn . Let S = (V1, . . . , Vn)⊆ V (G). Then S
is a vertex-determining set if and only if each column of the characteristic matrix,
M(S), contains a vertex-determining set for the corresponding factor of G and no
two columns of M(S) are isomorphic images of each other.

In this result, each vertex Vi in the ordered set S is an n-tuple (vi1,vi2, . . . ,vin),
with vi j ∈ V (G j ). Two columns of the characteristic matrix, [v1 j , . . . , vmj ]

T and
[v1k, . . . , vmk]

T, are isomorphic if there exists a graph isomorphism ψ : G j → Gk

such that ψ(vi j )= vik for all i ∈ {1, . . . , n}.
Applied to Qn = K2 □ · · ·□ K2, the characteristic matrix M(S) of a vertex set S

will be a 0-1 matrix. Since any nonempty subset of vertices of K2 is a vertex-
determining set, any 0-1 column is guaranteed to contain a determining set for the
corresponding K2 factor of Qn . Moreover, two 0-1 columns are isomorphic if and
only if they have either all identical bits or all opposite bits.

Observation 36. Let X be a 0-1 matrix with s rows and t columns. There are
2s different 0-1 vectors of length s, which can be partitioned into 2s−1 opposite
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pairs. Thus, if t > 2s−1, then X must have either two columns that are identical or
two columns that are opposite.

This observation is the key to proving the result below.

Proposition 37 [Boutin 2009, Theorem 3]. For n ≥ 1, Det(Qn)= ⌈log2(n)⌉ + 1.

For n = 1, Q1 = K2, which does not have an determining index. For n = 2,
Q2 = C4; by Theorem 14, Det′(C4)= Det(C4)= 2.

Theorem 38. Let n ≥ 3. Then

Det′(Qn)=

{
⌈log2 n⌉ + 1 if n − ⌈log2 n⌉> 2⌈log2 n⌉−1,

⌈log2 n⌉ otherwise.

Proof. Assume T is an edge-determining set for Qn with |T | = ⌈log2(n)⌉ − 1. Let
S be the set of endvertices of the edges of T. By the proof of Theorem 19, S is a
vertex-determining set. Let M(S) be the corresponding characteristic matrix. By
Proposition 35, the columns of M(S) are nonisomorphic.

Note that the endvertices of each edge in T differ by one bit. Thus, there are at
most ⌈log2(n)⌉− 1 columns such that the two rows of M(S) corresponding to the
endvertices of a single edge of T differ in that column. Let X be the submatrix
of M(S) consisting of the other columns, namely, the columns corresponding to
bits which are identical in both endvertices of every edge in T. Then X has at least
n −⌈log2(n)⌉+1 columns. Furthermore, X has at most ⌈log2(n)⌉−1 distinct rows,
since the endvertices of an edge are identical except for one bit and we removed
the columns in which the endvertices differ.

Let X ′ be the matrix obtained from X by removing any duplicate rows. Then X ′

has s ≤ ⌈log2 n⌉ − 1 rows and t ≥ n − ⌈log2(n)⌉ + 1 columns. We will need the
following result, the proof of which is in the Appendix.

Lemma 39. For all n ≥ 3, we have n − ⌈log2 n⌉ + 1> 2⌈log2 n⌉−2.

Applying this inequality,

t ≥ n − ⌈log2(n)⌉ + 1> 2⌈log2 n⌉−2
≥ 2s−1,

and so by Observation 36, X ′ must have some isomorphic columns. Hence, so
does X , and so does M(S). This is a contradiction. Thus, Det′(Qn)≥ ⌈log2(n)⌉.

By Corollary 20, Det′(Qn)≤ Det(Qn)= ⌈log2 n⌉ + 1. So the only two options
for Det′(Qn) are ⌈log2 n⌉ and ⌈log2 n⌉+ 1. We will show that the relative size of
n − ⌈log2 n⌉ and 2⌈log2 n⌉−1 decides which option holds.

First assume n−⌈log2(n)⌉> 2⌈log2(n)⌉−1. We can repeat the argument given at the
beginning of the proof to show that there can be no determining set of size ⌈log2 n⌉.
Using the same logic, we end up with a matrix X ′ with s ≤ ⌈log2 n⌉ rows and
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t ≥ n − ⌈log2 n⌉ columns. By assumption,

t ≥ n − ⌈log2(n)⌉> 2⌈log2 n⌉−1
≥ 2s−1,

so the columns of X ′ cannot be nonisomorphic by Observation 36. Hence, in this
case, Det′(Qn)= ⌈log2 n⌉ + 1.

Now assume n − ⌈log2 n⌉ ≤ 2⌈log2 n⌉−1. We will construct an edge-determining
set T for Qn of size ⌈log2 n⌉. We begin by creating an ⌈log2 n⌉×n matrix Y whose
leftmost ⌈log2 n⌉ columns are the standard basis vectors in Z

⌈log2 n⌉

2 and whose
remaining n−⌈log2 n⌉ columns are any set of nonisomorphic 0-1 columns of length
⌈log2 n⌉. For example, when n = 7, one possible such matrix is

Y =

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 .
We then create a corresponding (2⌈log2 n⌉)× n matrix X by creating a duplicate
copy of each row, then switching only the 1 that is in the first ⌈log2 n⌉ columns
to 0. Continuing with our example, we get

X =



1 0 0 0 1 1 1
0 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 0 1 0 1 1
0 0 1 1 1 0 1
0 0 0 1 1 0 1


.

The first ⌈log2 n⌉ columns of X have exactly one 1. The final n −⌈log2 n⌉ columns
of X are still pairwise nonisomorphic, and since each has an even number of 0’s
and an even number of 1’s, they are also nonisomorphic to any of the first ⌈log2 n⌉

columns. Hence, by Proposition 35, X is the characteristic matrix of a vertex-
determining set of Qn .

By construction, for each i ∈ {1, . . . , ⌈log2 n⌉}, rows 2i −1 and 2i of X differ in
exactly one column and therefore they correspond to a pair of adjacent vertices in Qn .
We let ei be the edge between these vertices. We then let T = {e1, e2, . . . , e⌈log2 n⌉}.

To show T is an edge-determining set of Qn , suppose φ ∈ Aut(Qn) fixes the
edges in T. Then φ either fixes or switches the endvertices of each edge. To be
consistent with the vertex notation in Proposition 35, let V 0

i and V 1
i denote the two

endvertices of edge ei , with V 0
i being the endvertex with 0 in the i-th bit. Let i

and j be distinct elements of {1, . . . , ⌈log2 n⌉}. (This is possible because n ≥ 3, so
⌈log2 n⌉ ≥ 2.) Suppose the last n −⌈log2 n⌉ columns of the i-th and j -th rows of Y
differ in ℓ bits. Using the fact that the distance between two vertices of Qn is the
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Figure 8. Comparing x − ⌈log2 x⌉ and 2⌈log2 x⌉−1.

number of bits in which the two corresponding bit strings differ, we get

d(V 0
i , V 0

j )= ℓ, d(V 0
i , V 1

j )= d(V 1
i , V 0

j )= ℓ+ 1, d(V 1
i , V 1

j )= ℓ+ 2.

Since φ fixes the edges of T, we have φ(V 0
i )= V 0

i or V 1
i and φ(V 0

j )= V 0
j or V 1

j .
Because automorphisms are distance-preserving, it must be the case that

ℓ= d(V 0
i , V 0

j )= d(φ(V 0
i ), φ(V

0
j )).

This is only possible if φ fixes the endvertices of both ei and e j . Thus, φ must
fix the endvertices of every edge in T. As noted earlier, these vertices constitute
a vertex-determining set of Qn and so φ must be the identity. Hence, T is an
edge-determining set. □

An interesting implication of Theorem 38 is that as n increases, Det′(Qn) fluctu-
ates infinitely many times between the upper bound of Det(Qn) and the marginally
smaller value of Det(Qn)−1. The graphs in Figure 8 illustrate that n−⌈log2 n⌉ and
2⌈log2 n⌉−1 keep alternating in relative size as n increases. An alternative formulation
of this result may clarify why this happens.

Corollary 40. Let n ≥ 3 and let k = ⌈log2 n⌉. Then

Det′(Qn)=

{
k if 2k−1 < n ≤ 2k−1

+ k,
k + 1 if 2k−1

+ k < n ≤ 2k .

Proof. Since k ≤ 2k−1 for all k ∈ N, both n and 2k−1
+k lie in the interval (2k−1, 2k

].
Either they are equal, or one is to the left of the other. If n ≤ 2k−1

+ k, then
n−⌈log2 n⌉=n−k ≤2k−1

=2⌈log2 n⌉−1, and so Det′(Qn)=⌈log2 n⌉ by Theorem 38.
By similar reasoning, if n > 2k−1

+ k, then Det′(Qn)= ⌈log2 n⌉ + 1. □

4. Open questions

In this paper, we have provided the determining index for several families of graphs,
including paths, cycles, complete graphs, complete bipartite graphs, trees and
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hypercubes. There are many more families of symmetric graphs for which this
parameter could be computed, such as generalized Petersen graphs, circulant graphs,
orthogonality graphs, Mycielskian graphs, Paley graphs and Praeger–Xu graphs, to
name a few. In addition, there are some more conceptual open questions.

(1) We have shown that in some cases, the determining index of a graph is strictly
smaller than the determining number. In these cases, the number of edges that are
needed to fix in order to break all symmetries of the graph is less than the number of
vertices that would be required, suggesting that fixing edges is more efficient. Are
there necessary and/or sufficient conditions on G that guarantee Det(G)= Det′(G)?

(2) By the proof of Theorem 38, the edge set

T = {{(1, 0, 0, 0), (0, 0, 0, 0)}, {(0, 1, 1, 0), (0, 0, 1, 0)}}

is a minimum edge-determining set for Q4. The set of endvertices of the edges of T
is a vertex-determining set but not minimum by Proposition 37. The characteristic
matrices of all possible subsets with one end vertex removed are1 0 0 0

0 0 0 0
0 1 1 0

 ,
1 0 0 0

0 0 0 0
0 0 1 0

 ,
0 0 0 0

0 1 1 0
0 0 1 0

 ,
1 0 0 0

0 1 1 0
0 0 1 0

 .
Each of these characteristic matrices has two isomorphic columns, so they do not
correspond to vertex-determining sets of Q4 by Proposition 35. Since Det(Q4)= 3,
we have found a minimum edge-determining set whose set of endvertices does not
contain a minimum vertex-determining set. Do there exist conditions such that
the set of endvertices of the edges in a minimum edge-determining set necessarily
contains a minimum vertex-determining set?

(3) Are there expressions for Det′(G + H) and Det′(G □ H) in terms of Det′(G)
and Det′(H)?

Appendix: Proof of Lemma 39

Lemma 39. For all n ≥ 3, we have 2⌈log2 n⌉−2 < n
2 ≤ n − ⌈log2 n⌉ + 1.

Proof. By definition of the ceiling function, ⌈log2 n⌉−1< log2 n ≤ ⌈log2 n⌉ for any
n ∈ N. Then 2⌈log2 n⌉−1 < 2log2 n

= n, because exponential functions are increasing.
Dividing by 2 gives 2⌈log2 n⌉−2 < n

2 .
Next, let f (x) = log2 x −

x
2 for 0 < x ∈ R. It is easily verified that the only

zeroes of f occur at x = 2 and x = 4. Elementary calculus can be used to show
that the graph y = f (x) is concave down, with the absolute maximum value at
x =

2
ln 2 ≈ 2.885. This means that, for all x ≥ 4, f (x)≤ 0, which implies log2 x ≤

x
2 .

Hence, for all n ≥ 4
⌈log2 n⌉ − 1< log2 n ≤

n
2
,
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which can be algebraically rearranged to
n
2

≤ n − ⌈log2 n⌉ + 1.

A direct calculation shows that this inequality also holds for n = 3. □
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In finite group theory, studying the prime graph of a group has been an important
topic for almost the past half-century. Recently, prime graphs of solvable groups
have been characterized in graph-theoretical terms only; this now allows the study
of these graphs without any knowledge of the group-theoretical background. We
approach prime graphs from a linear-algebraic angle and focus on the class of
minimally connected prime graphs introduced in earlier work on the subject. As our
main results, we prove new properties about the adjacency matrices of some special
families of these graphs, focusing on their characteristic polynomials and spectra.

1. Introduction

This paper deals with prime graphs of finite solvable groups. The prime graph of a
finite group is the graph whose vertices are the prime numbers dividing the order of
the group, and two vertices are linked by an edge if and only if their product divides
the order of some element of the group. Prime graphs were introduced by Gruenberg
and Kegel in the 1970s and have been an object of continuous study since. They
were one of the first graphs assigned to groups. This idea of representing group-
theoretical data via graphs and describing them via graph-theoretical notions proved
so successful that today there is a myriad of graphs (e.g., character degree graphs,
conjugacy class size graphs, etc.) and a whole industry of exploring them. For this
reason, today, prime graphs are often referred to as Gruenberg–Kegel graphs.

While a focus in the study of prime graphs has been on simple groups for a long
time, the main result of [Gruber et al. 2015], somewhat surprisingly, is a purely
graph-theoretical characterization of prime graphs of solvable groups: a (simple)
graph is the prime graph of a finite solvable group if and only if its complement is
triangle-free and 3-colorable. This made it possible to study simple groups whose
prime graph is that of a finite solvable group; see [Gorshkov and Maslova 2018].
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Moreover, this characterization allowed the authors of [Gruber et al. 2015], for
solvable groups, to introduce and study the idea of minimal prime graphs: connected
graphs whose complement is triangle-free and 3-colorable, but removing an edge
means that the complement has a triangle or is no longer 3-colorable. The groups
whose prime graphs are minimal are groups which are “saturated in Frobenius
actions” and have a restricted, but highly nontrivial structure, as discussed in detail
in [Gruber et al. 2015]. In [Florez et al. 2020] the authors thoroughly explore some
graph-theoretical properties of minimal prime graphs. Also, an alternative notion
of minimal prime graphs — minimally connected prime graphs — is introduced and
turns out to be closely related to minimal prime graphs.

In this paper, we study minimal prime graphs from a completely different angle,
namely from a linear algebra point of view. This is one of the first studies of graphs
related to groups with a linear algebra focus (the only other group-related graphs
for which this has been done and that we are aware of being Cayley graphs). We
will find a rich structure for some of the basic minimal and minimally connected
prime graphs. We will study the determinants and the spectra, or sets of eigenvalues
along with their multiplicities, of their adjacency matrices.

We now explain the specific content of the paper in some more technical detail.
A minimal prime graph (MPG) of a solvable group 0G is defined as a connected

graph of order n > 1 such that 0G \ {pq} is not the prime graph of a solvable group
for any pq ∈ E(0G); see [Gruber et al. 2015]. Equivalently, an MPG is a connected
graph of order n > 1 whose complement is triangle-free and three-colorable, but
the addition of an edge to its complement induces a triangle or renders it no longer
three-colorable. A minimally connected prime graph (MCPG) of a solvable group
is defined similarly, but it includes that the removal of any edge may result in a
disconnected graph without inducing a triangle or changing the colorability of the
complement; see [Florez et al. 2020]. If G is the class of minimal prime graphs
and Ĝ is the class of minimally connected prime graphs, it has been shown that
G ⊊ Ĝ and if 0 ∈ Ĝ \G, then 0 is the graph of two vertex-disjoint complete graphs
joined by one edge. These graphs are called complete bridge graphs, and we use the
notation Bm,n to denote the complete bridge graph of complete graphs Km and Kn

joined by one edge. For convenience, we say m ≥ n, and in order to maintain the
conditions in the definition of MCPGs, we must enforce the conditions m ≥ n > 1
or, if n = 1, then m ∈ {1, 2}; this result is found in [Florez et al. 2020]. Another
kind of MCPG (which is contained in G) that we will consider in this paper are
reseminant graphs. Reseminant graphs are defined as graphs generated by repeated
vertex duplication on C5. Vertex duplication is a method of generating new graphs
from old graphs, where if we have a graph G, we can produce the graph G ′ by
introducing a new vertex v to G and an edge vv′, where v′

∈ V (G), along with the
edges vx if and only if xv′

∈ E(G). In this paper, we are not concerned with the
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Figure 1. The complete bridge graph B4,3 (left), the suspension
graph S(4, 3) (middle), and the unique reseminant graph on six
vertices (right).

group-theoretic problems, so when we say “minimally connected prime graphs,”
we are referring to minimally connected prime graphs of solvable groups.

In Section 2, we will study the adjacency matrices of complete bridge graphs
that belong to the family of MCPGs. Specifically, this will consist of determining
the characteristic polynomial for these graphs and a closer study of the relationships
between the eigenvalues of Bm,m−1 for m > 2. In Section 3, we consider the same
types of questions for reseminant graphs. Namely, we look briefly at the character-
istic polynomial for the arbitrary reseminant graph and proceed to study particular
families of reseminant graphs in more detail. We will focus our attention on the
reseminant graphs where two nonadjacent vertices of the 5-cycle are duplicated
and the case where only one vertex is duplicated. The graphs in the former case are
isomorphic to the suspension graphs, which were studied in [Florez et al. 2020]. The
suspension graph S(m, n) is defined as the graph generated by adding a vertex to
Bm,n and connecting it with all of the nonbridge vertices. Also, for reseminant graphs
in the latter category, the rigidity of this structure enables us to carefully study how
the eigenvalues of these graphs are related to each other. Examples of a complete
bridge graph, a suspension graph, and a reseminant graph can be found in Figure 1.
We conclude the paper with a brief outlook on potential areas of future research.

Before proceeding, it will be helpful to define some additional notation that will
be used. If we have a graph 0, we will let A(0) be the adjacency matrix of 0. For
a square matrix M, we will use φ(M, x) to denote its characteristic polynomial
in x . We will also let Ĝ denote the set of minimally connected prime graphs, G
the minimal prime graphs, R the reseminant graphs, and R̃ the reseminant graphs
generated by repeatedly duplicating the same vertex.

2. Complete bridge graphs

In this section, we will determine the characteristic polynomial for complete bridge
graphs as MCPGs, along with the spectra of a particular family— namely, Bm,m−1.
Recall that, in order to be an MCPG, Bm,n must be such that m ≥ n > 1 or, if
n = 1, then m ∈ {1, 2}. Also, we will restrict our attention to the complete bridge
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graphs that are MCPGs with m + n ≥ 4 (or m > 2 for Bm,m−1 graphs) because
all these graphs share P4, the path graph with four vertices and three edges, as
their compression graphs, while B2,1 and B1,1, the only remaining complete bridge
graphs that are MCPGs, do not. (Compression graphs are the quotient graphs by
structural equivalence classes; see [Nguyen et al. 2019] for more on structural
equivalence.) The spectra for B2,1 and B1,1 can easily be determined with a CAS
and, since they do not fit in with the general approach we will be using, we will not
be concerned with them in this paper.

The following lemma will be essential for proving some of the remaining the-
orems in this paper. The reader unfamiliar with equitable partitions is advised to
consult [Godsil and Royle 2001] (or a similar book) before proceeding. Regarding
notation, 0/S below denotes the quotient graph of 0 by S.

Lemma 2.1. If S is an equitable partition of a graph 0, then the characteristic
polynomial of A(0/S) divides the characteristic polynomial of A(0).

Now, we will determine the characteristic polynomial for any complete bridge
graph that is an MCPG.

Theorem 2.2. Let Bm,n be an MCPG with m + n ≥ 4 (thus, Bm,n has P4 as its
compression graph). The characteristic polynomial of Bm,n is

φ(A(Bm,n), x) = Q(x)(x + 1)m+n−4, (1)
where
Q(x) = x4

+ (4 − (m + n))x3
+ (mn − 3(m + n) + 5)x2

+ (2mn − 2(m + n))x + (m + n − 3). (2)

Proof. We first show that Q(x) divides the characteristic polynomial. To do so,
we will first identify all structurally equivalent vertices (i.e., vertices that share the
same neighbors, excluding only each other). This partitions the graph into four
subgraphs, being the m −1 vertices in the Km subgraph and the n −1 vertices of the
Kn subgraph that are not the bridge vertices, with the two remaining equivalence
classes being the two bridge vertices. Let this partition be denoted by S, which is
an equitable partition. We find that the quotient matrix A(Bm,n/S) is given by

A(Bm,n/S) =


m−2 1 0 0
m−1 0 1 0

0 1 0 n−1
0 0 1 n−2

 .

By Laplace expansion, it is easily calculated that

det (I x − A(Bm,n/S)) = φ(A(Bm,n/S), x)

= (x4
+ (4 − (m + n))x3

+ (mn − 3(m + n) + 5)x2

+ (2mn − 2(m + n))x + (m + n − 3)).
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By Lemma 2.1, this must divide the characteristic polynomial of A(Bm,n).
Now, it is not too difficult to see that the remaining m + n − 4 eigenvalues must

all be −1. This can be seen by the fact that Bm,n may be obtained by taking a
P4 graph (this is its compression graph) and duplicating one of its “end” vertices
m −2 times and the other n −2 times. Duplicating a vertex always adds a −1 to the
spectrum of a graph (while changing the eigenvalues that are not −1) because, when
the adjacency matrix A is passed to I + A (or −I − A), the rows (and columns)
corresponding to the duplicated vertex and the new vertex are identical. Thus, it
follows that Bm,n will have −1 as an eigenvalue of multiplicity m + n − 4. In other
words, (x + 1)m+n−4 divides φ(A(Bm,n), x). The theorem follows. □

Corollary 2.3. The determinant of A(Bm,n) is given by

det (A(Bm,n)) = (−1)m+n−1(3 − (m + n)). (3)

Proof. This follows easily by reading off the linear term of the characteristic
polynomial of Bm,n in (1). □

Although it is nice to have the characteristic polynomial for any complete
bridge graph, it is difficult to know how the roots of the polynomial Q(x) from
Theorem 2.2 are related to each other and −1. However, when we consider the
special class Bm,m−1, we find a case where we can determine how the eigenvalues
are related with relative ease. This leads us to the next result.

Corollary 2.4. If m > 2, then Bm,m−1 has m − 2 as an eigenvalue; further, the
characteristic polynomial of Bm,m−1 is

φ(A(Bm,m−1), x)= (x3
+(3−m)x2

+(2−2m)x−2)(x−(m−2))(x+1)2m−5. (4)

Proof. First, we let n = m − 1, which gives us

φ(A(Bm,m−1), x)

= (x4
+(5−2m)x3

+(m2
−7m +8)x2

+(2m2
−6m +2)x +(2m −4))(x +1)2m−5

by Theorem 2.2. The conclusion follows by observing that

x4
+ (5 − 2m)x3

+ (m2
− 7m + 8)x2

+ (2m2
− 6m + 2)x + (2m − 4)

= (x3
+ (3 − m)x2

+ (2 − 2m)x − 2)(x − (m − 2)). □

For the remainder of this section, we will let θ1 ≥ θ2 ≥ θ3 be the roots of
x3

+ (3 − m)x2
+ (2 − 2m)x − 2.

Lemma 2.5. If m > 2, then θ1 is the unique largest eigenvalue of Bm,m−1, and it
satisfies m − 1 ≤ θ1 ≤ m. Additionally, θ2 and θ3 satisfy the following inequalities:

(i) −3 ≤ θ2 + θ3 ≤ −2.

(ii) 2/m ≤ θ2θ3 ≤ 2/(m − 1).
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Proof. First, we note that the largest eigenvalue of any graph is bounded below by
the average degree of every induced subgraph and bounded above by the maximum
vertex degree (this is a standard result in spectral graph theory and can be found in
[Brouwer and Haemers 2012], for example). The maximum degree of any vertex
in Bm,m−1 is m and m − 1 is the largest average degree of any induced subgraph
(namely, the induced subgraph Km). This tells us that the largest eigenvalue is
bound between m −1 and m; since −1 < m −2 < m −1, we deduce that the largest
eigenvalue is θ1 and m − 1 ≤ θ1 ≤ m.

Now, we will utilize the fact that the sum of the eigenvalues of A(Bm,n) is the
trace of the matrix (thus, 0) and the product of the eigenvalues is the determinant.
Thus, we deduce

3∑
i=1

θi = m − 3,

3∏
i=1

θi = 2. (5)

(This can also be determined from the coefficients of the polynomial.) The in-
equalities (i) and (ii) for θ2 and θ3 follow from these equations and the fact that
m − 1 ≤ θ1 ≤ m.

Finally, we want to show that θ1 is the unique largest eigenvalue. By (i) of this
lemma, we know that θ3 must be negative, and by (ii), we see that θ2 must also be
negative. Thus, θ1 and m − 2 are the only positive eigenvalues of Bm,m−1, so the
uniqueness of θ1 as the largest eigenvalue follows since θ1 > m − 2. □

Now, we are ready to determine how the eigenvalues of Bm,m−1 are related,
thereby resulting in its spectrum.

Theorem 2.6. If m > 2, then θ1 > m − 2 > 0 > θ2 > −1 > θ3, and

Spec(Bm,m−1) =

(
θ1 m−2 θ2 −1 θ3

1 1 1 2m−5 1

)
. (6)

Proof. By Lemma 2.5, we know θ1 > m − 2 > 0 and θ2 and θ3 are both negative,
so all that remains is to show how θ2 and θ3 relate to each other and −1. Assume
θ2 > θ3 > −1. Then θ2 +θ3 > −2, which contradicts Lemma 2.5(i). If −1 > θ2 > θ3,
then θ2θ3 > 1, which contradicts Lemma 2.5(ii). If we assume θ2 = θ3 = −1, then
the only m > 2 that satisfies Lemma 2.5 is m = 3, and it is easily seen that −1 is
not a root of x3

− 4x − 2. If θ2 > θ3 = −1, then Lemma 2.5(i) is not satisfied, and
if θ2 = −1 > θ3, then Lemma 2.5(ii) is not satisfied. Thus, by this casework, we
know 0 > θ2 > −1 > θ3, which completes the proof. □

3. Reseminant graphs

Recall that a reseminant graph is defined as a graph that can be generated by
duplicating the vertices of a 5-cycle. Thus, we see that a reseminant graph may be
represented by a 5-tuple, (n1, n2, n3, n4, n5) denoting how many times each vertex
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of the 5-cycle is duplicated. Thus, (0, 0, 0, 0, 0) corresponds to the 5-cycle itself.
If only one vertex of the 5-cycle is duplicated, we will let the first number in the
5-tuple for this graph denote the number of times this vertex is duplicated. If this
vertex is duplicated n times, we will use R(n,0,0,0,0), or R̃n , to denote this graph.
If only two vertices are duplicated, we will denote this graph by R(n,m,0,0,0) or
R(n,0,m,0,0), depending on whether the two duplicated vertices are adjacent or not,
where one of the vertices is duplicated n times and the other is duplicated m times,
with n ≥ m. For a general reseminant graph, we define its tuple (n1, n2, n3, n4, n5)

such that the i-th vertex of the 5-cycle (i.e., the vertex represented by the ni ) is
adjacent to the (i−1)-th and (i+1)-th vertices mod 5. We will denote this graph as
R(n1,n2,n3,n4,n5). Also, note that we have all isomorphisms of the form

R(n1,n2,n3,n4,n5)
∼= σ · R(n1,n2,n3,n4,n5) = R(n

σ−1(1)
,n

σ−1(2)
,n

σ−1(3)
,n

σ−1(4)
,n

σ−1(5)
),

where σ is in D10, the dihedral group of order 10, consisting of the symmetries of
the regular pentagon, which includes five reflections and five rotations (with one of
the rotations being the trivial one). As an example, R(n,0,m,0,0)

∼= R(n,0,0,m,0), but,
as stated previously, we will stick with the first notation as convention.

First, we will consider the characteristic polynomial of the arbitrary reseminant
graph. Although it is quite messy, this general form enables us to study particular
families of reseminant graphs more easily.

Theorem 3.1. The characteristic polynomial of an arbitrary reseminant graph R,
representing R(n1,n2,n3,n4,n5), is given by φ(A(R), x) = P(x)(x + 1)n1+n2+n3+n4+n5 ,
where P(x) is the determinant of

x−n1 −(n2+1) 0 0 −(n5+1)

−(n1+1) x−n2 −(n3+1) 0 0
0 −(n2+1) x−n3 −(n4+1) 0
0 0 −(n3+1) x−n4 −(n5+1)

−(n1+1) 0 0 −(n4+1) x−n5

 . (7)

Proof. This result follows quite simply by the same reasoning we saw in the proof
of Theorem 2.2. We get an equitable partition of R by defining each element in
the partition as the i-th vertex of the 5-cycle along with the ni vertices obtained
by duplicating it. Thus, the partition contains five elements, with sizes ni + 1 for
i ∈ {1, 2, 3, 4, 5}. If we call this partition S, we have the quotient matrix

A(R/S) =


n1 n2+1 0 0 n5+1

n1+1 n2 n3+1 0 0
0 n2+1 n3 n4+1 0
0 0 n3+1 n4 n5+1

n1+1 0 0 n4+1 n5

 ,
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and by Lemma 2.1, P(x)=det(I x−A(R/S))=φ(A(R/S), x) divides φ(A(R), x).
The (x + 1)n1+n2+n3+n4+n5 term in the characteristic polynomial of φ(A(R), x)

follows by reasoning similar to that used at the end of the proof of Theorem 2.2
(i.e., duplicating vertices adds a −1 to the spectrum). □

Next, we will look briefly at suspension graphs.

Theorem 3.2. If Bm,n is an MCPG with m +n > 4, then S(m, n) ∼= R(m−2,0,n−2,0,0).

Proof. By hypothesis, both m and n are greater than or equal to 2. First, note that
S(m, n) contains an induced 5-cycle. If we choose a nonbridge vertex from the Km

and Kn subgraphs of the Bm,n used to generate S(m, n), then these, along with the
bridge vertices in the Bm,n subgraph and the vertex that was added to Bm,n to form
S(m, n), yield one such example of an induced 5-cycle. The remaining m − 2 and
n − 2 vertices in the Km and Kn are in the same equivalence class (they share the
same neighbors) as their respective nonbridge vertices in the induced 5-cycle. Thus,
it is trivial to see that S(m, n) is a reseminant graph generated by duplicating one
vertex of a 5-cycle m − 2 times and a nonadjacent vertex of the 5-cycle n − 2 times.
The theorem follows. □

Given this isomorphism, we will hereby refer to reseminant graphs of type
R(a,0,b,0,0) by their suspension graph forms.

In the following theorem, we will give the characteristic polynomial for suspen-
sion graphs (under the assumption that m and n are greater than or equal to 2). The
proof is omitted, as it follows immediately from Theorem 3.1.

Theorem 3.3. The characteristic polynomial for S(m, n) is

φ(A(S(m, n)), x)

= (x5
−(m+n−4)x4

+(mn−4(m+n)+7)x3
+(4mn−5(m+n)+4)x2

+ (2mn − 3)x + 4mn − 5(m + n) + 6)(x + 1)m+n−4. (8)

The following corollary follows trivially from Theorem 3.3 in the same manner
that Corollary 2.3 followed from Theorem 2.2.

Corollary 3.4. The determinant of A(S(m, n)) is given by

det A(S(m, n)) = (−1)m+n(4mn − 5(m + n) + 6). (9)

Next, we will talk about the graphs in R̃, i.e., the family of reseminant graphs
generated by duplicating only one vertex of the 5-cycle. By Theorem 3.2, we have
the following result. Figure 2 shows an example of an explicit isomorphism defined
by ai 7→ a′

i .

Corollary 3.5. R̃n ∼= S(n + 2, 2).
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Figure 2. One of the isomorphisms between R̃2 and S(4, 2).

b
a

c

d

Figure 3. The graph above is a reseminant graph on seven vertices,
where two distinct vertices are duplicated. Using the notation in the
proof of Theorem 3.6, we can let a = v∗

1 , b = v∗
= v′

1, c = v′
= v∗

2 ,
and d = v′

2.

Before we shift our focus to the spectral properties of R̃, we will briefly look
at these graphs from a purely graph-theoretic standpoint. First, note that K −

n is
often used to denote a complete graph with an edge removed; we shall adopt that
notation. Furthermore, recall that, for a graph 0 and a subset A ⊂ V (0), the induced
subgraph 0[A] is the subgraph of 0 with vertex set A, with an edge between two
vertices in 0[A] if and only if there is an edge between them in 0.

Definition. An induced subgraph 0[π ] of 0 is a maximal K −
n induced subgraph

of 0 if

• π ⊂ V (0) with |π | = n,

• 0[π ] is isomorphic to K −
n ,

• 0[π ∪ {v}] is not isomorphic to K −

n+1 for every v ∈ V (0) \ π .

Now, we are prepared to start studying R̃, the family of reseminant graphs
generated by repeatedly duplicating the same vertex of the induced 5-cycle. Below,
we will use K −

i≥4 to denote a maximal K −

i induced subgraph with i ≥ 4.

Theorem 3.6. If 0 ∈R, then 0 ∈ R̃ if and only if 0 has no more than one maximal
K −

i≥4 induced subgraph.
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Figure 4. The graphs R̃1, R̃2, and R̃3 , respectively. Note they all
contain two vertices of degree 2 and one K −

n+3 induced subgraph.

Proof. Let 0 ∈ R. The forward direction follows from the definition of R̃. Next,
assume that 0 has no more than one maximal K −

i≥4 induced subgraph, but 0 is not
C5 or some other reseminant graph generated by repeatedly duplicating the same
vertex in the induced subgraph isomorphic to C5. Thus, we know that two unique
vertices v∗ and v′ on the 5-cycle were duplicated in the construction of 0. Let v∗

1 and
v∗

2 be the vertices in the induced 5-cycle of 0 that are adjacent to v∗, and similarly
define v′

1 and v′

2. Note that not all of these six vertices will be distinct because they
are all on the induced 5-cycle and that v∗ and v′ might be adjacent. Figure 3 provides
an example of how these vertex labels could work. If we let V ∗ be the set of vertices
in 0 that are the result of duplicating v∗, and if we define V ′ similarly, then 0[V ∗

∪

{v∗, v∗

1 , v∗

2}] and 0[V ′
∪ {v′, v′

1, v
′

2}] are K −

|V ∗|+3 and K −

|V ′|+3 induced subgraphs,
respectively. It is also not difficult to verify that these subgraphs are maximal. Take
0[V ∗

∪{v∗, v∗

1 , v∗

2}], for example. Any vertex v ∈ V (0)\(V ∗
∪{v∗, v∗

1 , v∗

2) is either
another vertex of the 5-cycle or a result of duplicating a vertex in the 5-cycle other
than v∗. In the first case, v is not connected with an vertex in V ∗

∪ {v∗, v∗

1 , v∗

2},
so clearly 0[V ∗

∪ {v∗, v∗

1 , v∗

2} ∪ {v}] is not a K −

|V ∗|+4 graph. We find the same
thing in the second case, since v would not be connected with any vertex in V ∗.
Thus, 0[V ∗

∪ {v∗, v∗

1 , v∗

2}] is a maximal K −

i≥4 graph, as is 0[V ′
∪ {v′, v′

1, v
′

2}] by
analogous reasoning. By contradiction, the desired result follows. □

Now, we have determined an important property of R̃ that does not apply to
any other reseminant graphs. Also, we can consider the following corollary from
Theorem 3.6, which is helpful for visualizing the reseminant graphs to which it
applies. It will be stated without proof, as its truth should be obvious.

Corollary 3.7. If 0 ∈ R, then 0 ∈ R̃ if and only if 0 has at least two adjacent
vertices of degree 2.

Observe that the properties in Theorem 3.6 and Corollary 3.7 are easily seen in
small examples of graphs in R, as shown in Figure 4. Now, we proceed to study the
spectral properties of R̃ graphs. As usual, ϕ will denote the golden ratio (1+

√
5)/2.

Theorem 3.8. For all nonnegative integers n, −ϕ and ϕ−1 are eigenvalues of R̃n;
further, the characteristic polynomial of R̃n is

φ(A(R̃n), x) = (x3
− (n +1)x2

− (n +3)x + (3n +2))(x +1)n(x2
+ x −1). (10)
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Proof. The proof of this theorem will look quite similar to the proof of Theorem 2.2.
Partitioning R̃n into the four vertices of the 5-cycle and the remaining vertex
duplicated n times yields an equitable partition, which we will denote by S. The
quotient matrix A(R̃n/S) is given by

A(R̃n/S) =


n 1 0 0 1

n+1 0 1 0 0
0 1 0 1 0
0 0 1 0 1

n+1 0 0 1 0

 .

By Laplace expansion, one finds

det (I x − A(R̃n/S)) = φ(A(R̃n/S), x)

= x5
− nx4

− (2n + 5)x3
− 3nx2

+ (4n + 5)x − 3n − 2.

It is not difficult to verify that

x5
− nx4

− (2n + 5)x3
− 3nx2

+ (4n + 5)x − 3n − 2

= (x3
− (n + 1)x2

− (n + 3)x + (3n + 2))(x2
+ x − 1).

By Lemma 2.1, this must divide φ(A(R̃n), x). Since x2
+ x − 1 has −ϕ and ϕ−1

as roots, it follows that all graphs in R̃ share these as eigenvalues. The fact that
the remaining n eigenvalues are −1 follows by reasoning similar to that used at the
end of the proof of Theorem 2.2. □

Now, we will let θ1 ≥ θ2 ≥ θ3 be the roots of x3
−(n+1)x2

−(n+3)x +(3n+2).
The following lemma is analogous to Lemma 2.5 from the previous section. In its
proof, we will use the idea of the discriminant. Recall that the discriminant of a
polynomial, which we denote with 1, is a number determined by the coefficients
of the polynomial (or, in our case, a new polynomial in n, since the coefficients
are dependent upon n) used to determine certain properties about the roots of the
original polynomial. There are well-known formulas for the discriminants of low-
degree polynomials, such as 1= b2

−4ac for the quadratic polynomial ax2
+bx +c,

but the formula grows increasingly more complicated as the degree gets larger.

Lemma 3.9. θ1 is the unique largest eigenvalue of R̃n and it satisfies
(n + 1)(n + 4)

n + 3
≤ θ1 ≤ n + 2.

Additionally, θ2 and θ3 satisfy the following inequalities

(i) −1 ≤ θ2 + θ3 ≤ −(n + 1)/(n + 3).

(ii) −(2 + 3n)(n + 3)/(n + 1)(n + 4) ≤ θ2θ3 ≤ −(2 + 3n)/(n + 2).

Proof. The inequalities can be determined via the same reasoning as was used in the
proof of Lemma 2.5. The maximum average degree of an induced subgraph is found
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by looking at the (maximal) K −

n+3 induced subgraph. In particular, we find that the
average degree of this subgraph is (n+1)(n+4)/(n+3) since there are n+3 vertices
and the sum of the degrees of the vertices is (n+1)(n+2)+2(n+1)= (n+1)(n+4).
If n = 0, clearly the maximum vertex degree is 2, and if n > 0, then the maximum
vertex degree is realized, for example, by the vertex of the C5 being duplicated,
which has degree n + 2. This gives us the inequality on θ1. The inequalities for
θ2 + θ3 and θ2θ3 follow from

3∑
i=1

θi = n + 1,

3∏
i=1

θi = −(2 + 3n), (11)

which may be computed directly as in Lemma 2.5 (the sum of all the eigenvalues
is 0, the trace of the adjacency matrix, and the product is the determinant of the
adjacency matrix). It remains to be shown that θ1 is unique as the largest eigenvalue.

By the inequality in (i), we see that θ3 must be negative, but θ2 must be positive
because (ii) tells us that θ2θ3 < 0. Thus, it does not follow immediately that θ1, being
greater than ϕ−1, is the unique largest eigenvalue. If θ1 = θ2, then the discriminant 1

of x3
−(n +1)x2

−(n +3)x +(3n +2) must be 0. Calculating this discriminant, we
find 1 = 13n4

+108n3
+118n2

+138n+120, which does not have any nonnegative
roots, so we can conclude that there does not exist any n ∈ Z+, where Z+ is the set
of positive integers {1, 2, 3, . . . }, such that x3

− (n + 1)x2
− (n + 3)x + (3n + 2)

has a double root. The uniqueness of θ1 as the largest eigenvalue follows. □

Next, we present the spectrum of R̃n .

Theorem 3.10. If n > 0, then θ1 > θ2 > ϕ−1 > −1 > −ϕ > θ3, and

Spec(R̃n) =

(
θ1 θ2 ϕ−1

−1 −ϕ θ3

1 1 1 n−5 1 1

)
.

If n = 0, then θ3 = −ϕ, θ2 = ϕ−1, and θ1 = 2, so

Spec(R̃0) = Spec(C5) =

(
2 ϕ−1

−ϕ

1 2 2

)
.

Proof. First, suppose n = 0. In this case, the θi are roots of x3
− x2

−3x +2, which
factors into (x − 2)(x2

+ x − 1), so we find θ1 = 2, θ2 = ϕ−1, and θ3 = −ϕ. Along
with Theorem 3.8, this establishes the second part of the theorem.

Now, let n >0. By Theorem 3.8, we note a priori that ϕ−1, and −ϕ are eigenvalues
in the spectrum with multiplicity ≥ 1 and −1 has multiplicity ≥ n − 5. By the
preceding lemma, we saw that θ1 > θ2 > 0 > θ3, so what remains to be shown is
how these three eigenvalues relate to ϕ−1, −ϕ, and −1.

First, assume there is some n such that θ2 <ϕ−1. By of Lemma 3.9(i), we then see
that θ3 >−ϕ. However, then we find −1<θ2θ3 <0, which contradicts Lemma 3.9(ii)
because −(2+3n)/(n+2)<−1 for all n > 0. Hence, we know that there is no n > 0
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such that θ2 < ϕ−1. It follows that θ1 > θ2 ≥ ϕ−1 for all n > 0. Now, we will show
that there is no n > 0 such that 0 > θ3 > −ϕ. Assume the contrary. Once again, by
Lemma 3.9, this requires that θ2 < ϕ−1, which we just showed is not the case. Thus,
we have another contradiction. Assume θ2 = ϕ−1 for some n > 0. The characteristic
polynomial must have all integer coefficients, and the minimal polynomial of ϕ−1

in the polynomial ring Z[x] is x2
+ x − 1, so we deduce x2

+ x − 1 must divide
x3

− (n + 1)x2
− (n + 3)x + (3n + 2). This would require θ3 = −ϕ, and there must

be some k ∈ Z such that (x2
+ x −1)(x −k) = x3

− (n +1)x2
− (n +3)x + (3n +2).

This simplifies to the system of equations −k + n = −2 and k − 3n = 2, which has
the unique solution (n, k) = (0, 2). This contradicts our assumption n > 0. We get
the same result if we assume first that θ3 = −ϕ, so we know that θ1, θ2, and θ3 are
all distinct from each other and ϕ−1, −ϕ, and −1, so the theorem is proved. □

4. Outlook

The natural question to ask after finding the spectrum of a graph is: is this graph
determined by its spectrum? In other words, does the spectrum provide a characteri-
zation, or are there other nonisomorphic graphs that share the same spectrum. Many
articles have considered this question for different families of graphs; see [Cámara
and Haemers 2014; van Dam and Haemers 2003; Topcu et al. 2016; Wang et al.
2009; Wang and Xu 2007]. Given the high multiplicities of the −1 eigenvalues for
both Bm,m−1 and R̃n , it may be helpful to approach this problem by considering
structural equivalence in graphs and determining which graph structures can be
candidates for cospectral graphs with Bm,m−1 and R̃n .

Another problem of interest is to determine how to account for all minimal prime
graphs since the reseminant graphs only constitute a proper subset of them. Thus, it is
of interest to determine whether there is a finite set of graphs that can generate all the
minimal prime graphs through simple graph operations such as vertex duplication.
If this were achieved, it would then be possible to study spectral properties of
minimal prime graphs (and minimally connected prime graphs) in general.
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Linear maps preserving
the Lorentz spectrum of 3 × 3 matrices
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For a given 3 × 3 real matrix A, the eigenvalue complementarity problem relative
to the Lorentz cone consists of finding a real number λ and a nonzero vector x ∈R3

such that xT (A−λI )x =0 and both x and (A−λI )x lie in the Lorentz cone, which
consists of all vectors in R3 forming a 45◦ or smaller angle with the positive z-axis.
We refer to the set of all solutions λ to this eigenvalue complementarity problem
as the Lorentz spectrum of A. Our work concerns the characterization of the
linear preservers of the Lorentz spectrum on the space M3 of 3 × 3 real matrices,
that is, the linear maps φ : M3 → M3 such that the Lorentz spectra of A and φ(A)
are the same for all A. We have proven that all such linear preservers take the
form φ(A)= (Q ⊕ [1])A(QT

⊕ [1]), where Q is an orthogonal 2 × 2 matrix.

1. Introduction

Let Mn denote the vector space of n × n real matrices. For a given matrix A ∈ Mn

and a closed convex cone K ⊆ Rn, the eigenvalue complementarity problem consists
of finding λ ∈ R and nonzero x ∈ Rn satisfying

x ∈ K , (A − λI )x ∈ K ∗ and xT (A − λI )x = 0, (1-1)

where K ∗ denotes the dual cone of K , that is,

K ∗
= {y ∈ Rn

: xT y ≥ 0 for all x ∈ K }.

This problem is a generalization of the standard eigenvalue problem for which
K = Rn and K ∗

= {0}.
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We are interested in the eigenvalue complementarity problem on the Lorentz
cone Kn , given by

Kn =

{[
ξ

η

]
: ξ ∈ Rn−1, η∈ R, ∥ξ∥2 ≤ η

}
.

Notably, the Lorentz cone is self-dual, i.e., Kn = (Kn)
∗. Thus, the eigenvalue

complementarity problem for the Lorentz cone consists of finding λ ∈ R and
nonzero x ∈ Rn satisfying

x ∈ Kn, (A − λI )x ∈ Kn and xT (A − λI )x = 0.

Any such solution λ is called a Lorentz eigenvalue of A, and any associated x is
called a Lorentz eigenvector. The collection of all such λ is the Lorentz spectrum
of A, denoted by σL(A). If λ has an associated Lorentz eigenvector in the interior
(resp. boundary) of Kn , it is called an interior (resp. boundary) Lorentz eigenvalue.
The collection of all interior (resp. boundary) Lorentz eigenvalues is called the
interior (resp. boundary) Lorentz spectrum of A, denoted by σint(A) (resp. σbd(A)).
Note that σL(A) is the (not necessarily disjoint) union of σint(A) and σbd(A). One
distinctive property of the L-spectrum compared to the standard spectrum of a
matrix is that it can be infinite. For the sake of brevity, throughout this paper we will
write L-eigenvalue, L-eigenvector and L-spectrum in place of Lorentz eigenvalue,
Lorentz eigenvector, and Lorentz spectrum, respectively.

The Lorentz cone is an important object of study in several areas of math,
especially in optimization. The associated optimization models have applications in
several fields such as engineering, finance, and control theory. The Lorentz cone is
also helpful to understand the behavior of some linear maps called Z-transformations.
For more on applications of the Lorentz cone, see [Alizadeh and Goldfarb 2003;
Németh and Gowda 2019].

Recently, see, e.g., [Bueno et al. 2021; 2022; Seeger and Torki 2020], there has
been particular interest in the characterization of the linear maps φ : Mn → Mn

which preserve the Lorentz spectrum of all matrices, that is, σL(A) = σL(φ(A))
for all A ∈ Mn . We call such maps linear preservers of the Lorentz spectrum. In
studying this problem, we assume n ≥ 3. For n = 2, the Lorentz cone is a polyhedral
cone, which is not the case for n ≥ 3. The characterization of the linear preservers of
the Lorentz spectrum for n = 2 is an immediate consequence of the characterization
of the linear preservers of the Pareto spectrum since the Pareto cone, or nonnegative
orthant, is a rotation of the Lorentz cone in R2 by 45◦ [Alizadeh and Shakeri 2017].

For n ≥ 3, some partial results have been proven in the literature.

Theorem 1.1 [Bueno et al. 2021]. Let φ : Mn → Mn be a linear preserver of the
L-spectrum. Then φ is bijective and φ(In)= In .
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Theorem 1.2 [Bueno et al. 2021]. Let Q be an orthogonal (n−1)× (n−1) matrix,
and let φ : Mn → Mn be the linear map given by

φ(A)=

[
Q 0
0 1

]
A

[
QT 0
0 1

]
. (1-2)

Then φ is a linear preserver of the L-spectrum.
Conversely, if n ≥ 3, φ : Mn → Mn is a linear preserver of the L-spectrum, and

φ(A)= P AQ for some fixed n × n matrices P and Q, then φ satisfies (1-2).

In [Bueno et al. 2021] it was conjectured that, for n ≥ 3, every linear preserver
of the L-spectrum must have the form (1-2). In this paper, we show that this
conjecture is true for n = 3, providing a full characterization of the linear preservers
of the L-spectrum in M3. Moreover, we have shown that the linear preservers
of the L-spectrum on M3 also preserve the nature of the L-eigenvalues, that is,
σint(A)= σint(φ(A)) and σbd(A)= σbd(φ(A)) for all A ∈ M3. The strategy used to
prove the characterization of the linear preservers of the L-spectrum on M3 does not
seem to be easily generalizable to n > 3 since it crucially relies on the restrictive
form of 3 × 3 matrices with infinitely many L-eigenvalues.

The paper is organized as follows: In Section 2, we give some properties of
the L-spectrum of a matrix, as well as a full characterization of the boundary
L-eigenvalues. In Section 2.1, we characterize the 3×3 real matrices with infinitely
many L-eigenvalues. In Section 3, we present the main results of this paper.
The proof of one of these results (Theorem 3.1) is somewhat cumbersome and is
presented in Sections 4 and 5.

2. The Lorentz spectrum of a matrix

In this section, we discuss the Lorentz spectrum of a matrix in more detail. As
mentioned in Section 1, we assume that n ≥ 3. We also use the notation ∥ · ∥ to
denote the Euclidean norm of a vector since this is the only vector norm we use in
this paper.

Since Kn is a cone, it is closed under positive scalar multiplication. That is, if
x ∈ Kn and α ≥ 0, then αx ∈ Kn . Thus, if x = [x̃T, xn]

T
∈ Kn is an L-eigenvector

of a matrix A, then x/xn is also an L-eigenvector of A associated with the same
L-eigenvalue since xn > 0. Moreover, if x is in the interior (resp. boundary) of Kn ,
so is x/xn . Thus, from the definition of interior and boundary L-eigenvalues, we
have the following results.

Theorem 2.1. λ∈ R is an interior L-eigenvalue of A ∈ Mn if and only if there exists
ξ ∈ Rn−1 such that ∥ξ∥< 1 and

(A − λI )
[
ξ

1

]
= 0.
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Proof. Recall that λ is an interior L-eigenvalue of A if and only if there exists an
L-eigenvector x = [ξ T, 1]

T of A associated with λ in the interior of Kn. This is
equivalent to the conditions ∥ξ∥< 1, (A−λI )x ∈Kn , and xT (A−λI )x = 0. Since
x and (A −λI )x must be orthogonal and any pair of nonzero orthogonal vectors in
Kn must lie on the boundary, we have (A − λI )x = 0, which proves the result. □

Notice that as an immediate consequence of the previous theorem, we have that
the interior L-eigenvalues of a matrix A are also standard eigenvalues of A and that
the corresponding L-eigenvectors are also standard eigenvectors.

Theorem 2.2. λ ∈ R is a boundary L-eigenvalue of A ∈ Mn if and only if there
exists ξ ∈ Rn−1 and s ≥ 0 such that ∥ξ∥ = 1 and

(A − λI )
[
ξ

1

]
= s

[
−ξ

1

]
.

Proof. Recall that λ is a boundary L-eigenvalue of A if and only if there exists an
L-eigenvector x = [ξ T , 1]

T of A associated with λ on the boundary of Kn. This is
equivalent to the conditions ∥ξ∥ = 1, (A−λI )x ∈Kn , and xT (A−λI )x = 0. Since
(A − λI )x must be orthogonal to x , we know (A − λI )x must be a nonnegative
multiple of [−ξ T, 1]

T, which proves the result. □

Next we give another characterization of the boundary L-eigenvalues of a matrix.
We denote the Moore–Penrose inverse of a matrix M by M†.

Theorem 2.3 [Seeger and Torki 2003]. Let

A =

[
Ã u
vT a

]
, where Ã ∈ Mn−1, u, v ∈ Rn−1, and a ∈ R. (2-1)

A real number λ is in σbd(A) if one can write λ= µ+ s, with µ, s ∈ R and s ≥ 0,
solving (exactly) one of the following systems:

System I:

I.1 µ is not an eigenvalue of Ã.

I.2 vT ( Ã −µIn−1)
−1u = a −µ− 2s.

I.3 ∥( Ã −µIn−1)
−1u∥ = 1.

System II:

II.1 µ is an eigenvalue of Ã.

II.2 u ∈ Im( Ã −µIn−1).

II.3 v ∈ Im( ÃT
−µIn−1).

II.4 vT ( Ã −µIn−1)
†u = a −µ− 2s.

II.5
∥∥∥[ Ã −µIn−1

vT

]†[ u
a −µ− 2s

]∥∥∥ ≤ 1.
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System III:

III.1 µ is an eigenvalue of Ã with geometric multiplicity 1.

III.2 u ∈ Im( Ã −µIn−1).

III.3 v /∈ Im( ÃT
−µIn−1).

III.4
∥∥∥[ Ã −µIn−1

vT

]†[ u
a −µ− 2s

]∥∥∥ = 1.

System IV:

IV.1 µ is an eigenvalue of Ã with geometric multiplicity at least 2.

IV.2 u ∈ Im( Ã −µIn−1).

IV.3 v /∈ Im( ÃT
−µIn−1).

IV.4
∥∥∥[ Ã −µIn−1

vT

]†[ u
a −µ− 2s

]∥∥∥ ≤ 1.

A distinguishing property of the L-spectrum compared to the standard spectrum
of a matrix is that, while an n×n real matrix cannot have more than n standard eigen-
values, it may have infinitely many L-eigenvalues. The next theorem characterizes
the matrices with this property.

Theorem 2.4 [Seeger and Torki 2003]. Let n ≥ 3 and let A ∈ Mn be partitioned as
in (2-1). The matrix A has infinitely many L-eigenvalues if and only if System IV
in Theorem 2.3 is satisfied for a real eigenvalue µ of Ã and for all s in an interval
[s1, s2], where 0 ≤ s1 < s2.

2.1. Matrices in M3 with infinitely many L-eigenvalues. Here we characterize
the matrices in M3 with infinitely many L-eigenvalues. First we give a technical
result, which is used in the proof of Theorem 2.6. We use the notation tr(A) for
the trace of a matrix A. This result can be found in [Ben-Israel and Greville 2003,
Exercise 19, page 49], but we include a proof for completeness.

Lemma 2.5. Let A be a real matrix of rank 1. Then

A†
=

1
tr(AT A)

AT .

Proof. Since A has rank 1, we know A = uvT for some nonzero vectors u and v.
Hence

AT A = vuT uvT
= ∥u∥

2vvT

also has rank 1. Thus, since AT A is symmetric, it is diagonalizable and has
exactly one nonzero eigenvalue, namely, tr(AT A). Hence there exists a nonsingular
matrix P such that

AT A = P
[

tr(AT A) 0
0 0

]
P−1.
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Let A = U6V T be a singular value decomposition of A. Then

6 =

[√
tr(AT A) 0

0 0

]
and

A†
= V6†U T

= V
[

1/
√

tr(AT A) 0
0 0

]
U T

=
1

tr(AT A)
V6T U T

=
1

tr(AT A)
AT. □

The following theorem is the main result in this section.

Theorem 2.6. Let A ∈ M3. Then A has infinitely many L-eigenvalues if and only if

A =

[
cI2 0
vT a

]
, where v ̸= 0, a, c ∈ R, and c < a + ∥v∥.

Moreover, [
max

{
c,

a + c − ∥v∥

2

}
,

a + c + ∥v∥

2

]
⊆ σbd(A). (2-2)

Proof. Assume that A is a 3×3 real matrix with infinitely many L-eigenvalues. Let
us partition A as

A =

[
Ã u
vT a

]
, where Ã ∈ M2, u, v ∈ R2, and a ∈ R.

By Theorem 2.4, A must have a boundary L-eigenvalue λ satisfying System IV in
Theorem 2.3. Thus, by Theorem 2.2, λ= µ+ s with s ≥ 0, and there is a solution
to the system of equations[

Ã −µI2 u
vT a −µ− 2s

] [
ξ

1

]
= 0, ∥ξ∥ = 1.

By condition IV.1, since µ is an eigenvalue of Ã of geometric multiplicity 2,
we have rank( Ã − µI2) = 0. Thus Ã = µI2. Moreover, by condition IV.2, u ∈

Im( Ã−µI2), which means u = 0. By condition IV.3, we deduce that v ̸= 0. Finally,
by condition IV.4, we have∥∥∥∥[

0
vT

]† [
0

a −µ− 2s

]∥∥∥∥ ≤ 1. (2-3)

By Lemma 2.5, [
0
vT

]†

=
1

∥v∥2 [0, v].

Hence, (2-3) reduces to

|a −µ− 2s|
∥v∥

=
1

∥v∥2

∥∥∥∥[0, v]
[

0
a −µ− 2s

]∥∥∥∥ ≤ 1,
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or equivalently,
a − ∥v∥ −µ

2
≤ s ≤

a + ∥v∥ −µ

2
. (2-4)

Since there are infinitely many L-eigenvalues and s ≥ 0, we deduce a+∥v∥−µ> 0.
Then by taking c =µ, we have an interval of L-eigenvalues λ=µ+s given by (2-2).

The converse holds by Theorem 2.4. □

3. Main results

We now state the two main results of the paper. The first result, together with
Theorem 1.2, provides a full characterization of the linear maps φ : M3 → M3 that
preserve the Lorentz spectrum.

Theorem 3.1. Let φ : M3 → M3 be a linear preserver of the Lorentz spectrum.
Then there exists an orthogonal matrix Q ∈ M2 such that

φ(A)=

[
Q 0
0 1

]
A

[
QT 0
0 1

]
for all A ∈ M3.

We call Q the orthogonal matrix associated with φ.

The strategy we employ to prove Theorem 3.1 is to use the linearity of the linear
preservers applied to a decomposition of M3 as a direct sum of three subspaces.
More explicitly, we decompose M3 as

M3 =

{[
0 0
vT a

]}
⊕

{[
Ã 0
0 0

]}
⊕

{[
0 u
0 0

]}
=: S1 ⊕S2 ⊕S3, (3-1)

where Ã ∈ M2, u, v ∈ R2, and a ∈ R. The image of an arbitrary matrix A ∈ M3

under φ is the sum of the images of the projections of A onto each of these subspaces.
The proof of Theorem 3.1 is a direct consequence of Theorems 4.5, 5.7, and 5.11,

which give the images of the matrices in S1, S2 and S3, respectively, under a linear
preserver of the L-spectrum. The second main result is presented next and shows
that any linear preserver of the L-spectrum on M3 must preserve the nature of the
L-eigenvalues of a matrix.

Theorem 3.2. Let φ : M3 → M3 be a linear preserver of the L-spectrum. Then, for
all A ∈ M3,

σint(A)= σint(φ(A)) and σbd(A)= σbd(φ(A)).

Proof. Let φ be a linear preserver of the L-spectrum on M3, and let A ∈ M3. Since
φ−1 is also a linear preserver of the L-spectrum on M3, it is enough to show that
σint(A)⊆ σint(φ(A)) and σbd(A)⊆ σbd(φ(A)).
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Let λ ∈ σint(A). We want to show that λ ∈ σint(φ(A)). By Theorem 2.1, there
exists ξ ∈ R2 with ∥ξ∥< 1 such that

(A − λI3)

[
ξ

1

]
= 0.

Let Q̂ =
[ Q

0
0
1

]
, where Q is the orthogonal matrix associated with φ given by

Theorem 3.1. Then we have

(φ(A)− λI3)

[
Qξ
1

]
= Q̂(A − λI3)Q̂T Q̂

[
ξ

1

]
= 0,

where ∥Qξ∥ = ∥ξ∥ < 1 since Q is orthogonal. Thus, λ ∈ σint(φ(A)) and hence
σint(A) ⊆ σint(φ(A)). By taking ∥ξ∥ = 1 instead of ∥ξ∥ < 1, we likewise have
σbd(A)⊆ σbd(φ(A)). □

4. Image of matrices in S1 under a linear preserver

As explained in Section 3, in order to prove Theorem 3.1, we determine the images
of matrices in the three subspaces S1, S2 and S3 given in (3-1) under a linear
preserver of the L-spectrum. In this section, we focus on S1.

We begin with a lemma that sheds light on the possible images under a linear
preserver of the L-spectrum of matrices in S1 with infinitely many L-eigenvalues.

Lemma 4.1. Let φ : M3 → M3 be a linear preserver of the L-spectrum and

A =

[
0 0
vT a

]
, where v ̸= 0 and 0< a + ∥v∥.

Then either

φ(A)=

[
0 0
wT a

]
, where ∥w∥ = ∥v∥, (4-1)

or

φ(A)=
[

0 0
wT a+∥v∥−∥w∥

]
, where a+∥v∥

2
≤ ∥w∥ ≤ a+∥v∥

and a−∥v∥ ≤ 0 ≤ a. (4-2)

Proof. Since φ preserves the L-spectrum, by Theorem 2.6, we have

φ(A)=

[
d I2 0
wT b

]
, where w ̸= 0, d, b ∈ R, and d < b + ∥w∥.

We consider four cases, in which we make repeated use of Lemma A.3 to determine
the possibilities for φ(A) and its L-spectrum.

Case I: Assume that 0< a − ∥v∥. In this case,

σL(A)= {a} ∪

[
a − ∥v∥

2
,

a + ∥v∥

2

]
.
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Hence φ(A) must have an isolated L-eigenvalue. We have two possible cases
for φ(A):

Subcase I.1: d < b − ∥w∥. In this case,

σL(φ(A))= {b} ∪

[
d + b − ∥w∥

2
,

d + b + ∥w∥

2

]
.

Since σL(A)= σL(φ(A)), we have

b = a, d = 0, and ∥v∥ = ∥w∥,

which leads to (4-1).

Subcase I.2: b − ∥w∥< d < b + ∥w∥ and d > b. In this case,

σL(φ(A))= {b} ∪

[
d,

d + b + ∥w∥

2

]
.

Since σL(A)= σL(φ(A)), we have

b = a, d =
a − ∥v∥

2
, and d + ∥w∥ = ∥v∥.

However, this implies
a = b < d + ∥w∥ = ∥v∥,

a contradiction since ∥v∥< a by assumption. So this subcase is impossible.

Case II: Assume that a − ∥v∥ = 0. In this case,

σL(A)= [0, ∥v∥].

Hence φ(A) does not have isolated L-eigenvalues. We have two possible cases
for φ(A):

Subcase II.1: d = b − ∥w∥. In this case,

σL(φ(A))= [d, ∥w∥ + d].

Since σL(A)= σL(φ(A)), we have

d = 0, ∥w∥ = ∥v∥, and b = d + ∥w∥ = ∥v∥ = a,

which leads to (4-1).

Subcase II.2: b − ∥w∥< d < b + ∥w∥ and d ≤ b. In this case,

σL(φ(A))=

[
d,

b + ∥w∥ + d
2

]
.

Since σL(A)= σL(φ(A)), we have

d = 0 and
b + ∥w∥

2
= ∥v∥,
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or equivalently,

d = 0 and b + ∥w∥ = 2∥v∥ = a + ∥v∥.

Combining this with the inequalities that define this case, we see that

∥w∥> b − d = a + ∥v∥ −∥w∥ = 2∥v∥ −∥w∥,

and hence ∥w∥> ∥v∥. Similarly,

a − ∥v∥ = 0 = d ≤ b = a + ∥v∥ −∥w∥,

and hence ∥w∥ ≤ 2∥v∥. Altogether, Subcase II.2 gives the conditions

d = 0, b = a + ∥v∥ −∥w∥, ∥v∥< ∥w∥ ≤ 2∥v∥, and a − ∥v∥ = 0,

which leads to (4-2).

Case III: Assume that a − ∥v∥< 0< a + ∥v∥ and a ≥ 0. In this case,

σL(A)=

[
0,

a + ∥v∥

2

]
.

Hence φ(A) does not have isolated L-eigenvalues. We have two possible cases
for φ(A):

Subcase III.1: b − ∥w∥ = d . In this case,

σL(φ(A))= [d, ∥w∥ + d].

Since σL(A)= σL(φ(A)), we have

d = 0, ∥w∥ =
a + ∥v∥

2
, b = d + ∥w∥ =

a + ∥v∥

2
.

Note that b = a + ∥v∥ −∥w∥ and a − ∥v∥ ≤ 0 ≤ a. Thus this case leads to (4-2).

Subcase III.2: b − ∥w∥< d < b + ∥w∥ and d ≤ b. In this case,

σL(φ(A))=

[
d,

b + ∥w∥ + d
2

]
.

Since σL(A)= σL(φ(A)), we have

d = 0 and b + ∥w∥ = a + ∥v∥.

Combining this with the inequalities that define Subcase III.2, we see that

∥w∥> b − d = a + ∥v∥ −∥w∥,

and hence ∥w∥> (a + ∥v∥)/2. Similarly,

0 = d ≤ b = a + ∥v∥ −∥w∥,

and hence ∥w∥ ≤ a + ∥v∥, which leads to (4-2).
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Case IV: Assume that a − ∥v∥< 0< a + ∥v∥ and a < 0. In this case,

σL(A)= {a} ∪

[
0,

a + ∥v∥

2

]
.

Hence, φ(A) must have an isolated L-eigenvalue. We have two possible cases
for φ(A):

Subcase IV.1: d < b − ∥w∥. In this case,

σL(φ(A))= {b} ∪

[
d + b − ∥w∥

2
,

d + b + ∥w∥

2

]
.

Since σL(A)= σL(φ(A)), we have

b = a,
d + a − ∥w∥

2
= 0 and d + ∥w∥ = ∥v∥.

However, this implies
a = b > d + ∥w∥ = ∥v∥,

a contradiction since a − ∥v∥< 0 by assumption. So this subcase is impossible.

Subcase IV.2: b − ∥w∥< d < b + ∥w∥ and d > b. In this case,

σL(φ(A))= {b} ∪

[
d,

d + b + ∥w∥

2

]
.

Since σL(A)= σL(φ(A)), we have

b = a, d = 0, and ∥w∥ = ∥v∥,

which leads to (4-1). □

We show next that the subspace S1 is invariant under linear preservers of the
L-spectrum.

Lemma 4.2. Let φ : M3 → M3 be a linear preserver of the L-spectrum. Then the
subspace

S1 =

{[
0 0
vT a

]
: v ∈ R2, a ∈ R

}
of M3 is φ-invariant, that is, φ(S1)⊆ S1.

Proof. We consider three cases:

Case I: Assume A =
[ 0
vT

0
a

]
, with v ̸= 0 and 0 < a + ∥v∥. Then by Lemma 4.1,

φ(A) ∈ S1.

Case II: Assume A =
[ 0

0
0
a

]
. Let v ∈ R2 be a nonzero vector such that 0< a + ∥v∥.

We have

A =

[
0 0
0 a

]
=

[
0 0
vT a

]
−

[
0 0
vT 0

]
=: B − M.
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Note that B and M have infinitely many L-eigenvalues by Theorem 2.6. Thus, by
Case I, φ(B), φ(M) ∈ S1. Then since φ is linear and S1 is a subspace,

φ(A)= φ(B)−φ(M) ∈ S1.

Case III: Assume A =
[ 0
vT

0
a

]
with v ̸= 0 and 0 ≥ a +∥v∥. Let d ∈ R be such that

0< a + d + ∥v∥. Then we have

A =

[
0 0
vT a

]
=

[
0 0
vT a + d

]
−

[
0 0
0 d

]
=: B − M.

Note that φ(B) ∈ S1 by Case I and that φ(M) ∈ S1 by Case II. Then since φ is
linear and S1 is a subspace,

φ(A)= φ(B)−φ(M) ∈ S1. □

We show next that we can partition the subspace S1 into three subsets which are
also φ-invariant.

Lemma 4.3. Let φ : M3 → M3 be a linear preserver of the Lorentz spectrum. Then
φ(C1)⊆ C1, φ(C2 ∪ C4)⊆ C2 ∪ C4, and φ(C3 ∪ C5)⊆ C3 ∪ C5, where

C1: =

{[
0 0
vT a

]
: 0 ̸= v ∈ R2, a ∈ R, 0< a + ∥v∥

}
,

C2: =

{[
0 0
vT a

]
: 0 ̸= v ∈ R2, a ∈ R, a + ∥v∥ = 0

}
,

C3: =

{(
0 0
vT a

)
: 0 ̸= v ∈ R2, a ∈ R, a + ∥v∥< 0

}
,

C4: =

{[
0 0
0 a

]
: a ∈ R, a > 0

}
,

C5: =

{[
0 0
0 a

]
: a ∈ R, a ≤ 0

}
.

Proof. The result for C1 follows from Lemma 4.1. Then by Lemmas A.3 and A.1,
every matrix in C2 ∪ C4 has exactly two L-eigenvalues, and every matrix in C3 ∪ C5

has exactly one L-eigenvalue. Thus, the results for C2 ∪ C4 and for C3 ∪ C5 follow
from Lemma 4.2. □

Next we show that any linear preserver of the L-spectrum restricted to the
subspace C4 ∪ C5 is the identity map. Henceforth we denote the matrix ei eT

j by Ei j .

Lemma 4.4. Let φ : M3 → M3 be a linear preserver of the L-spectrum, and let
A =

[0
0

0
a

]
, where a ∈ R. Then, φ(A)= A.
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Proof. Assume first that A ∈ C4. Then a > 0 and σL(A)= {a, a/2} by Lemma A.1.
We know that φ(A) ∈ C2 ∪C4 by Lemma 4.3. If φ(A) ∈ C2, then σL(φ(A))= {a, 0}

by Lemma A.3, a contradiction. Therefore, φ(A) ∈ C4, which implies φ(A)= A
by Lemma A.1. In particular, we must have φ(E33)= E33.

Now assume that A ∈ C5. Then A = aE33 and a ≤ 0, so by linearity, we have

φ(A)= φ(aE33)= aφ(E33)= aE33 = A. □

We next present the main result in this section, which gives the image of matrices
in the subspace S1 under linear preservers of the L-spectrum.

Theorem 4.5. Let φ : M3 → M3 be a linear preserver of the L-spectrum. Then
there exists an orthogonal 2×2 matrix Q such that, for any matrix A =

[ 0
vT

0
a

]
∈ S1,

φ(A)=

[
0 0

(Qv)T a

]
.

We call Q the orthogonal matrix associated with φ.

Proof. By Lemma 4.4 and the linearity of φ, it is enough to show that

φ(B) := φ

([
0 0
vT 0

])
=

[
0 0

(Qv)T 0

]
for some orthogonal matrix Q independent of v.

This is trivially true for v= 0 since φ(0)= 0, so assume v ̸= 0. Since φ preserves
the L-spectrum and B ∈ C1, by Lemma 4.1, we have

φ(B)=

[
0 0
wT

∥v∥ −∥w∥

]
for some w ∈ R2 such that ∥v∥/2 ≤ ∥w∥ ≤ ∥v∥. Let

H =

[
0 0
vT

−∥v∥

]
∈ C2.

By linearity and by Lemma 4.4,

φ

([
0 0
vT

−∥v∥

])
= φ

([
0 0
0 −∥v∥

])
+φ

([
0 0
vT 0

])
=

[
0 0
0 −∥v∥

]
+

[
0 0
wT

∥v∥ −∥w∥

]
=

[
0 0
wT

−∥w∥

]
.

Notice that −∥w∥ ∈ σint(φ(H)) and σL(H) = {−∥v∥, 0} by Lemma A.3. Since
∥w∥ ≥ ∥v∥/2> 0, this implies ∥w∥ = ∥v∥. In particular, we have

φ(E31)=

[
0 0
pT 0

]
and φ(E32)=

[
0 0

qT 0

]
, where ∥p∥ = ∥q∥ = 1.
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Let

p = [p1, p2]
T , q = [q1, q2]

T , and Q =

[
p1 q1

p2 q2

]
.

Then for any

A =

[
0 0
vT 0

]
, where v = [v1, v2]

T ,

we have

φ(A)= v1φ(E31)+ v2φ(E32)=

[
0 0

v1 pT
+ v2qT 0

]
=

[
0 0

(Qv)T 0

]
.

Since ∥Qv∥ = ∥v∥ for all v, we deduce that Q is an orthogonal matrix. □

5. Image of matrices in S2 and S3 under a linear preserver

We begin this section with some technical lemmas that will be used in the proof
of several results. Here we denote the adjugate of a matrix A by adj(A) and the
spectral radius of a matrix A by ρ(A).

5.1. Auxiliary results.

Lemma 5.1 (Rayleigh–Ritz theorem). Let S be a symmetric matrix and let λmax be
the largest eigenvalue of S. Then

λmax = max
∥x∥=1

xT Sx .

Lemma 5.2. Let

Ba =

[
M̃ r
hT a + t

]
, where M̃ ∈ M2, h, r ∈ R2, and t ∈ R are fixed.

Assume there is some a0 ∈ R such that a ∈ σL(Ba) for all a ≥ a0. Then a is an
interior L-eigenvalue of Ba for all sufficiently large a, and we have

t = 0, hT r = 0, and hT adj(M̃)r = 0.

Proof. Suppose that a ≥ a0 is a boundary L-eigenvalue of φ(Ba). Then, by
Theorem 2.2, a = µ+ s for some s ≥ 0, and there exists ξ with ∥ξ∥ = 1 such that

0 =

[
(M̃ −µ)ξ + r
hT ξ + t − s

]
=

[
M̃ξ + (s − a)ξ + r

hT ξ + t − s

]
.

From the second equation, we have s = hT ξ+t , and replacing it in the first equation,
we get

0 = M̃ξ + (s − a)ξ + r = M̃ξ + (hT ξ + t − a)ξ + r.
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Multiplying on the left by ξ T and taking into account that ∥ξ∥ = 1, we have

0 = ξ T M̃ξ + hT ξ + t − a + ξ T r

=
1
2ξ

T M̃ξ +
1
2ξ

T M̃ξ + hT ξ + r T ξ + t − a

=
1
2ξ

T (M̃ + M̃T
)ξ + (h + r)T ξ + t − a

≤
1
2λmax(M̃ + M̃T

)+ ∥h + r∥ + t − a, (5-1)

where the third equality follows from the fact that ξ T M̃ξ is a number and, conse-
quently, is equal to its transpose. The inequality follows from the Rayleigh–Ritz
theorem and the Cauchy–Schwarz inequality.

Hence for a> 1
2λmax(M̃ + M̃T

)+∥h +r∥+ t , condition (5-1) fails, which means
that a must be an interior L-eigenvalue of φ(Ba) for all sufficiently large a. This
implies there is some ξ with ∥ξ∥< 1 such that

0 =

[
M̃ − aI r

hT t

] [
ξ

1

]
=

[
(M̃ − aI )ξ + r

hT ξ + t

]
.

For a > ρ(M̃), we know that M̃ − aI must be invertible. From the first equation,
we have ξ = −(M̃ − aI )−1r , and replacing it in the second equation, we get

0 = hT ξ + t = t − hT (M̃ − aI )−1r

= t −
hT adj(M̃ − aI )r

det(M̃ − aI )
= t −

hT (adj(M̃)− aI )r

a2 − a tr(M̃)+ det(M̃)
.

This implies

0 = t (a2
− a tr(M̃)+ det(M̃))− hT adj(M̃)r + ahT r

= ta2
+ (hT r − t tr(M̃))a + t det(M̃)− hT adj(M̃)r.

Since this holds for all sufficiently large a, we must have t =0, hTr =hTr−t tr(B̃)=0,
and hT adj(M̃)r = −t det(M̃)+ hT adj(M̃)r = 0. □

5.2. Image of matrices in S2 under a linear preserver. Even though our focus in
this section is matrices in S2, we start with a partial result for matrices in S3.

Lemma 5.3. Let φ : M3 → M3 be a linear preserver of the L-spectrum with
associated orthogonal matrix Q, and let

B =

[
0 u
0 0

]
, where u ̸= 0.

Then

φ(B)=
[

B̃ Qu
wT 0

]
, where det(B̃)=0, wT Qu =0, and adj(B̃)Qu = tr(B̃)Qu.
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Proof. Let

φ(B)=

[
B̃ v

wT b

]
, a > ∥u∥, and B⊥

=

[
0 0
zT a

]
,

where z is any vector orthogonal to u. By Theorem 4.5,

φ(B⊥)=

[
0 0

(Qz)T a

]
.

Thus,

φ(B + B⊥)= φ(B)+φ(B⊥)=

[
B̃ v

(w+ Qz)T a + b

]
.

Since a is an (interior) L-eigenvalue of B + B⊥ with L-eigenvector [uT /a, 1]
T,

we know a ∈ σL(φ(B + B⊥)). By Lemma 5.2, we have b = 0, (w+ Qz)T v = 0,
and (w+ Qz)T adj(B̃)v = 0. By setting z = 0, we have, in particular, wT v = 0
and wT adj(B̃)v = 0, which also implies zT QT v = zT QT adj(B̃)v = 0 for all z
orthogonal to u.

Let c ∈ R, c > 0, and consider now the matrix H := B + BT
+ cE33. Then, by

Theorem 4.5,

φ(H)=

[
B̃ v

(w+ Qu)T c

]
.

By Lemma A.2, m := (c +
√

c2 + 4∥u∥2)/2 is an (interior) L-eigenvalue of H, so
m is also an L-eigenvalue of φ(H).

Step 1: Suppose m is a boundary L-eigenvalue of φ(H). Then, using an argument
similar to that used in the first part of the proof of Lemma 5.2, we get

0 = ξ T B̃ξ + (w+ Qu)T ξ + c − 2m + ξ T v

≤
1
2λmax(B̃ + B̃T

)+ ∥w+ Qu + v∥ −

√
c2 + 4∥u∥2.

Hence, for

c >
√( 1

2λmax(B̃ + B̃T
)+ ∥w+ Qu + v∥

)2
− 4∥u∥2

(or for any c if the radicand is negative), this condition fails, which means that for
sufficiently large c, m must be an interior L-eigenvalue of φ(H).

Step 2: Because m is an interior L-eigenvalue of φ(H) for sufficiently large values
of c, there must be some ξ with ∥ξ∥< 1 such that

0 =

[
(B̃ − m I )ξ + v

(w+ Qu)T ξ + c − m

]
.
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Since m approaches ∞ as c increases, we know that m will exceed the spectral
radius of B̃ for all sufficiently large c. Thus, from the first equation, we get

ξ = −(B̃ − m I )−1v.

Replacing ξ in the second equation,

0 = (w+ Qu)T ξ + c − m = c − m − (w+ Qu)T (B̃ − m I )−1v

= c − m −
(w+ Qu)T (adj(B̃)− m I )v

m2 − m tr(B̃)+ det(B̃)
.

Then, taking into account that (c − m)m = −∥u∥
2, defining x = w+ Qu, we have

0 = (c − m)[m2
− m tr(B̃)+ det(B̃)] − xT (adj(B̃)− m I )v

= −∥u∥
2m + ∥u∥

2 tr(B̃)+ (c − m) det(B̃)− xT adj(B̃)v+ mxT v

= [∥u∥
2 tr(B̃)− xT adj(B̃)v] + [xT v− ∥u∥

2
− det(B̃)]m + c det(B̃)

= [∥u∥
2 tr(B̃)− xT adj(B̃)v] + [xT v− ∥u∥

2
− det(B̃)]

(
m −

c
2

)
+ [xT v− ∥u∥

2
+ det(B̃)]c

2
.

Therefore,(
[xT v− ∥u∥

2
− det(B̃)]

(
m −

c
2

))2

=

(
[∥u∥

2 tr(B̃)− xT adj(B̃)v] + [xT v− ∥u∥
2
+ det(B̃)]c

2

)2

or equivalently,(
xT v− ∥u∥

2
− det(B̃)

)2 c2
+4∥u∥

2

4

=

(
[∥u∥

2 tr(B̃)− xT adj(B̃)v] + [xT v− ∥u∥
2
+ det(B̃)]c

2

)2
.

Grouping terms to rewrite this expression as a polynomial in c and using the
identity a2

− b2
= (a + b)(a − b) for all a, b ∈ R, we get

0 = (xT v−∥u∥
2)(− det(B̃))c2

−[∥u∥
2 tr(B̃)−xT adj(B̃)v][xT v−∥u∥

2
+det(B̃)]c

+ [xT v− ∥u∥
2
+ det(B̃)]∥u∥

2
− [∥u∥

2 tr(B̃)− xT adj(B̃)v]2.

Since c can take arbitrarily large positive values, we deduce

det(B̃)= 0, xT v = ∥u∥
2, and xT adj(B̃)v = ∥u∥

2 tr(B̃).

Recall that we showed above thatwT v=wT adj(B̃)v=0. Since x =w+Qu, we get

∥u∥
2
= xT v = uT QT v and ∥u∥

2 tr(B̃)= xT adj(B̃)v = uT QT adj(B̃)v.
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Recall also that zT QT v = zT QT adj(B̃)v = 0 for any z orthogonal to u. This gives
us the relation [

uT QT

zT QT

] [
v adj(B̃)v

]
= ∥u∥

2
[

1 tr B̃
0 0

]
,

where the matrix on the left is nonsingular for z ̸= 0. Hence, for each z, the
equation has a unique solution [v adj(B̃)v]. By inspection, we note that v = Qu
and adj(B̃)v= tr(B̃)Qu satisfy it, so these must be the true vectors. We then obtain
adj(B̃)Qu = tr(B̃)Qu, and the result follows. □

Now we start analyzing the behavior of the matrices in S2 under the linear
preservers of the L-spectrum. As a byproduct of this work, we obtain further
information about the images of matrices in S3 under such linear preservers.

Lemma 5.4. Let φ : M3 → M3 be a linear preserver of the L-spectrum with associ-
ated orthogonal matrix Q, and let Ã ∈ M2 and u ∈ R2. Then for some C̃, B̃ ∈ M2,

φ

([
Ã 0
0 0

])
=

[
C̃ 0
0 0

]
and φ

([
0 u
0 0

])
=

[
B̃ Qu
0 0

]
.

Proof. Let

A =

[
Ã 0
0 0

]
and φ(A)=

[
C̃ p
qT c

]
.

Let a > 0, z ∈ R2 be any nonzero vector, and

H :=

[
0 0
zT a

]
.

By Theorem 4.5, we have

φ(H)=

[
0 0

(Qz)T a

]
.

Thus,

φ(A + H)= φ(A)+φ(H)=

[
C̃ p

(q + Qz)T c + a

]
.

Notice that a is an (interior) L-eigenvalue of A + H with L-eigenvector [0, 1]
T.

Since φ preserves the L-spectrum, a ∈ σL(φ(A + H)). By Lemma 5.2, we have
c = 0 and (q + Qz)T p = 0. Since Q is invertible and z ̸= 0 is arbitrary, we have
(q +w)T p = 0 for all w ̸= 0, which implies p = 0. Thus,

φ

([
Ã 0
0 0

])
=

[
C̃ 0
qT 0

]
.

Now we show that q = 0. For any arbitrary nonzero vector u ∈ R2, let a ∈ R be
large enough so that, by Lemma A.4, a is an interior L-eigenvalue of

G :=

[
Ã u
0 a

]
.
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By the linearity of φ and by Lemmas 5.3 and 4.4, we have

φ(G)=

[
B̃ + C̃ Qu
(w+ q)T a

]
, where wT Qu = 0 and adj(B̃)Qu = tr(B̃)Qu.

We know that for large enough a, we have a ∈ σL(G) and hence a ∈ σL(φ(G)).
By Lemma 5.2, a is an interior L-eigenvalue of φ(G) for large enough a,
(w + q)T Qu = 0, and (w + q)T adj(B̃ + C̃)Qu = 0. Since wT Qu = 0, we
deduce qT Qu = 0. Since u is arbitrary and independent of q , we deduce that q = 0.
Thus, the claim for matrices in S2 follows.

Now observe that

0 = wT adj(B̃ + C̃)Qu = wT adj(B̃)Qu +wT adj(C̃)Qu

= tr(B̃)wT Qu +wT adj(C̃)Qu = wT adj(C̃)Qu.

Note that we have shown that matrices Ã⊕[0] map to C̃⊕[0]. Since φ is bijective
by Theorem 1.1, any matrix C̃ ⊕[0] must have a preimage Ã⊕[0]. In particular, we
may take C̃ = adj(R), where R =

[0
1

−1
0

]
. Hence, wT RQu = 0. Since wT Qu = 0

and since the vectors Qu and RQu are linearly independent, we know furthermore
that w = 0 for all nonzero u, which proves the claim for matrices in S3. □

Next we show that the matrix C̃ in Lemma 5.4 is closely related to Ã.

Lemma 5.5. Let φ : M3 → M3 be a linear preserver of the L-spectrum with
associated orthogonal matrix Q. Then there exists an invertible diagonal matrix D
such that either

φ

([
Ã 0
0 0

])
=

[
Q D ÃD−1 QT 0

0 0

]
for all Ã ∈ M2 (5-2)

or

φ

([
Ã 0
0 0

])
=

[
Q D ÃT D−1 QT 0

0 0

]
for all Ã ∈ M2. (5-3)

Proof. Let W3 := { Ã ⊕ [a] : Ã ∈ M2, a ∈ R}. By Lemmas 4.4 and 5.4, the linear
map φ̃ : W3 → W3 given by φ̃(A)= φ(A) preserves the Lorentz spectrum on W3.
Thus, by Theorem 4.2 in [Bueno et al. 2021] with M = W3, there exists some
invertible matrix P ∈ M2 such that either

φ

([
Ã 0
0 0

])
= φ̃

([
Ã 0
0 0

])
=

[
P ÃP−1 0

0 0

]
for all Ã ∈ M2 (5-4)

or

φ

([
Ã 0
0 0

])
= φ̃

([
Ã 0
0 0

])
=

[
P ÃT P−1 0

0 0

]
for all Ã ∈ M2. (5-5)
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We will now show that P = Q D for some invertible diagonal matrix D. Consider
matrices of the form

B =

[
D 0
vT a

]
=

d1 0 0
0 d2 0
v1 v2 a

 ∈ M3, (5-6)

where d1 ̸= d2, and v1 + a − d1 ≥ 0. Then λ = (v1 + a + d1)/2 ∈ σbd(B), with
µ = d1, s = (v1 + a − d1)/2, and ξ = [1, 0]

T. Let us additionally assume that
λ /∈ σ(B)= {a, d1, d2}. Then λ /∈ σ(φ(B)), and by (5-4) and (5-5),

φ(B)=

[
P D P−1 0
(Qv)T a

]
.

As σL(B)= σL(φ(B)), we deduce that λ∈ σbd(φ(B)). Thus, λ=µ+s, with s ≥ 0,
and there is some ξ such that ∥ξ∥ = 1 and

(P D P−1
−µI2)ξ = 0,

(Qv)T ξ + a −µ− 2s = 0.

From the first equation, we get

(D −µI2)P−1ξ = 0.

Let x = P−1ξ , that is, ξ = Px = x1 p1 + x2 p2, where pi denotes the i-th column
of P. We consider two cases:

Case I: µ = d1. Then since d1 ̸= d2, we have x2 = 0 and ξ = x1 p1. As ∥ξ∥ = 1,
we have x1 = ±1/∥p1∥. Thus,

0 = (Qv)T ξ + a −µ− 2s = (Qv)T x1 p1 + a −µ− 2(λ−µ)

= (Qv)T x1 p1 + a + d1 − (v1 + a + d1)= vT (x1 QT p1)− v1.

Hence,

vT (x1 QT p1)= v1 = vT
[

1
0

]
= vT e1.

Since this equality holds for any v with v1 + a − d1 ≥ 0 and (v1 + a + d1)/2 /∈
{a, d1, d2}, we deduce that x1 QT p1 = e1, or equivalently,

p1 =
1
x1

Qe1 = ±∥p1∥q1,

where q1 denotes the first column of Q. By multiplying P and P−1 by ±1, we may
assume without loss of generality that p1 = ∥p1∥q1.

Case II: µ ̸= d1. Then since ξ ̸= 0, we have x1 = 0 and µ= d2. Thus,

0= (Qv)T ξ+a−µ−2(λ−µ)= (Qv)T ξ+a+d2−(v1+a+d1)≤∥v∥+d2−d1−v1.
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However, by taking d2 > d1 + v1 −∥v∥, this condition fails, which means we can
discard this case.

If we consider now the family of matrices of the form (5-6) that satisfy
v2 +a −d2 ≥ 0, we will have λ= (v2 +a +d2)/2 ∈ σbd(B). Assuming additionally
that (v2 + a + d2)/2 /∈ {a, d1, d2}, that is, λ /∈ σ(B), a similar argument to the one
above yields p2 = ±∥p2∥q2, so we may take the diagonal matrix D in the statement
of the lemma to be diag(∥p1∥,±∥p2∥), which is invertible since P is. □

In the next lemma we narrow down the possible matrices D for which (5-2)
holds and show that (5-3) cannot occur.

Lemma 5.6. Let φ : M3 → M3 be a linear preserver of the L-spectrum with
associated orthogonal matrix Q. Then

φ

([
Ã 0
0 0

])
=

[
Q 0
0 1

] [
D ÃD−1 0

0 0

] [
QT 0
0 1

]
for all Ã ∈ M2, (5-7)

where D = I2 or D = diag(1,−1).

Proof. Step 1: Let

A =

 0 0 0
m 0 0
v1 v2 a

 ,
with m ̸= 0, a > |v2|, v1 ̸= ±v2, and v2 /∈ {0,±a}. By Lemma A.5, σbd(A) =

{(±v2 + a)/2} and, hence {(±v2 + a)/2} ⊆ σL(φ(A)). By Lemma 5.5, φ(A) is as
in (5-2) or (5-3). Assume that φ(A) is as in (5-3). Let D = diag(d1, d2). Then,

φ(A)=

[
Q 0
0 1

]  0 md1/d2 0
0 0 0
v1 v2 a

 [
QT 0
0 1

]
and {(±v2 + a)/2} ⊆ σbd(φ(A)). (Note that σ(φ(A))= {0, a} and (±v2 + a)/2 /∈
{0, a}.) By Lemma A.5, the only potential boundary L-eigenvalues of φ(A) are
(±v1 +a)/2. However, v1 ̸= ±v2, so this is a contradiction, which implies φ(A) is
as in (5-2).

Step 2: Consider matrices of the form

B =

 0 c 0
c 0 0
v1 v2 a

 , c > 0.

Then, by the conclusion of Step 1 and by Theorem 1.2,

σL(B)= σL(φ(B))= σL

 0 cd1/d2 0
cd2/d1 0 0
v1 v2 a

 =: σL(H).
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Consider the family of matrices B having the boundary L-eigenvalue

λ=
(v1 + v2)/

√
2 + a + c

2
,

which, by Lemma A.5, happens if

v1 + v2
√

2
+ a − c ≥ 0.

Since σ(H) = {a, c,−c}, consider those matrices B for which λ /∈ {a, c,−c} so
that λ ∈ σbd(H). Hence, by Lemma A.5,

2λ ∈

{
±(|d1|v1 + |d2|v2)/

√

d2
1 + d2

2 + a + |c|,
±(|d1|v1 − |d2|v2)/

√

d2
1 + d2

2 + a − |c|.

This implies d1 = ±d2, and after multiplying D by 1/d1 and D−1 by d1, which
does not change D ÃD−1, we get D = I2 or D = diag(1,−1). □

Now we present the main result of this section, which provides a complete
description of the images of matrices in S2 under linear preservers of the L-spectrum.

Theorem 5.7. Let φ : M3 → M3 be a linear preserver of the L-spectrum with
associated orthogonal matrix Q. Then

φ

([
Ã 0
0 0

])
=

[
Q ÃQT 0

0 0

]
for all Ã ∈ M2.

Proof. Let A =
[ Ã

0
0
0

]
. We know that φ(A) is as in (5-7). Suppose

φ

([
Ã 0
0 0

])
=

[
Q D ÃDQT 0

0 0

]
for all Ã, where D = diag(1,−1). By Theorem 1.2, we know that φ preserves the
L-spectrum if and only if the map

ψ(A)=

[
QT 0
0 1

]
φ(A)

[
Q 0
0 1

]
preserves the Lorentz spectrum, so we may suppose without loss of generality that
Q = I2.

Let

A =

[
Ã 0
vT a

]
,

where v = [v1, v2]
T

∈ R2 is such that v1, v2 ̸= 0 and ∥v∥ = 1. Moreover, let
Ã = P D̃ PT, where

P =

[
v1 v2

−v2 v1

]
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is an orthogonal matrix and D̃ = diag(λ, v1v2 + a), with λ > v1v2 + a. Note
that v1v2 + a ∈ σint(A) with corresponding L-eigenvector [v2/2, v1/2, 1]

T. Thus,
v1v2 + a ∈ σL(φ(A)), where

φ(A)=

[
D P D̃ PT D 0

vT a

]
.

Step 1: Suppose v1v2 +a is a standard L-eigenvalue of φ(A). Then there is some ξ ,
with ∥ξ∥ ≤ 1, such that

0 = [H − (v1v2 + a)I3]

[
ξ

1

]
=

[
D P D̃ PT Dξ − (v1v2 + a)ξ

vT ξ − v1v2

]
,

or equivalently,
0 = (P D̃ PT )Dξ − (v1v2 + a)Dξ,

0 = vT ξ − v1v2.

(5-8)

Since v1v2 ̸= 0, the second equation implies that ξ ̸= 0 and

ξ1 = v2 −
v2

v1
ξ2.

As D is invertible, Dξ ̸= 0 and, from (5-8), we deduce that Dξ is an L-eigenvector
of P D̃ PT associated with v1v2 + a. This implies that Dξ must be proportional to
the second column of P. However, this gives a contradiction as

0 = det[Dξ, p2] = det
[
v2(1 − ξ2/v1) v2

−ξ2 v1

]
= v1v2 ̸= 0.

Therefore, v1v2 + a is not a standard L-eigenvalue of φ(A).

Step 2: Since v1v2 + a must be a nonstandard L-eigenvalue of φ(A), there exist
s > 0 and ξ with ∥ξ∥ = 1 such that

0 = [H − (v1v2 + a)I3]

[
ξ

1

]
+ s

[
ξ

−1

]
=

[
D P D̃ PT Dξ − (v1v2 + a − s)ξ

vT ξ − v1v2 − s

]
.

Since ξ ̸= 0, from the first equation we see that ξ is an eigenvector of D P D̃ PT D
corresponding to the eigenvalue v1v2 + a − s. Because D P is orthogonal, the
only eigenvalues of D P D̃ PT D are λ and v1v2 + a, which implies either s =

v1v2 + a − λ < 0 or s = 0, a contradiction.
Thus, v1v2 + a cannot be an L-eigenvalue of φ(A), and as a result, φ does not

preserve the Lorentz spectrum. Hence, the claim follows. □

5.3. Image of matrices in S3 under a linear preserver. We finish the proof of
Theorem 3.1 by analyzing the behavior of linear preservers of the L-spectrum on
the subspace S3. We already obtained some partial results in Lemmas 5.3 and 5.4.
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We begin by presenting an auxiliary lemma that will be used in proving some of
the results in this section.

Lemma 5.8. Let φ : M3 → M3 be a linear preserver of the L-spectrum with
associated orthogonal matrix Q. Let

φ

([
0 u
vT 0

])
=

[
B̃ Qu

(Qv)T 0

]
.

Then, for any integer n, we have

σL

([
n B̃ Qu

(Qv)T 0

])
= σL

([
0 u
vT 0

])
. (5-9)

Proof. First we show that, for all integers n,

σL

([
n B̃ Qu
(Qv)T 0

])
= σL

([
(n + 1)B̃ Qu
(Qv)T 0

])
. (5-10)

Note that [
n B̃ Qu
(Qv)T 0

]
=

[
Q 0
0 1

] [
nQT B̃ Q u
vT 0

] [
QT 0
0 1

]
,

so, by Theorem 1.2,

σL

([
n B̃ Qu
(Qv)T 0

])
= σL

([
nQT B̃ Q u
vT 0

])
.

Now observe that

φ

([
nQT B̃ Q u
vT 0

])
=

[
B̃ + nQ QT B̃ Q QT Qu

(Qv)T 0

]
=

[
(n + 1)B̃ Qu
(Qv)T 0

]
.

Since φ preserves the L-spectrum, we get

σL

([
n B̃ Qu
(Qv)T 0

])
= σL

([
nQT B̃ Q u
vT 0

])
= σL

([
(n + 1)B̃ Qu
(Qv)T 0

])
,

which shows (5-10).
We now prove the claim by induction on n. Since φ preserves the L-spectrum,

we know that

σL

([
0 u
vT 0

])
= σL

([
B̃ Qu

(Qv)T 0

])
,

so (5-9) holds for n = 1. Now assume that (5-9) holds for some integer n. Then by
(5-10), it holds for both n + 1 and n − 1, so the claim follows for all integers. □

The next two lemmas analyze the image of a basis for S3 under the linear
preservers. Note that the assumption on the form of the images of the two matrices
in the basis is a consequence of Lemma 5.4.
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Lemma 5.9. Let φ : M3 → M3 be a linear preserver of the L-spectrum with
associated orthogonal matrix Q, and let

φ

([
0 QT e1

0 0

])
=

[
B̃1 e1

0 0

]
and φ

([
0 QT e2

0 0

])
=

[
B̃2 e2

0 0

]
.

Then there exist x, y ∈ R such that

B̃1 =

[
0 x
0 y

]
and B̃2 =

[
−x 0
−y 0

]
.

Proof. Let u = [u1, u2]
T

∈ R2 be a nonzero vector, and let

A =

[
0 QT u

(QT u)T 0

]
.

Then by Theorem 4.5 and by the linearity of φ,

φ(A)=

[
u1 B̃1 + u2 B̃2 u

uT 0

]
.

By Lemma A.2, ∥u∥ ∈ σbd(A) ⊆ σL(φ(A)). Suppose that ∥u∥ ∈ σint(φ(A)).
Then there exists ξ with ∥ξ∥< 1 such that

0 =

[
u1 B̃1 + u2 B̃2 − ∥u∥I2 u

uT
−∥u∥

] [
ξ

1

]
.

Then from the second equation, we get

∥u∥ = uT ξ ≤ ∥u∥∥ξ∥< ∥u∥,

a contradiction. Therefore, ∥u∥ ∈ σbd(φ(A)). This means that there exist s ≥ 0,
µ, and ξ such that ∥u∥ = µ+ s, ∥ξ∥ = 1, and

0 =

[
u1 B̃1 + u2 B̃2 −µI2 u

uT
−∥u∥ − s

] [
ξ

1

]
,

from which it follows that s = uT ξ−∥u∥≤ 0. This implies s = 0 and hence µ=∥u∥.
The only solution ξ of the equation uT ξ−∥u∥= 0 on the unit circle is ξ = u/∥u∥.

Thus, we have

0 = (u1 B̃1 + u2 B̃2 − ∥u∥I2)ξ + u = (u1 B̃1 + u2 B̃2)
u

∥u∥
(5-11)

for all u ̸= 0. Choosing u1 ̸= u2 = 0 gives B̃1e1 = 0, and choosing u2 ̸= u1 = 0
gives B̃2e2 = 0. Plugging these results in (5-11) gives

0 = u1u2(B̃1e2 + B̃2e1).

Since this must hold when u1, u2 ̸= 0, we deduce B̃1e2 = −B̃2e1, and the result
follows. □
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Lemma 5.10. Let

B̃1 =

[
0 x
0 y

]
and B̃2 =

[
−x 0
−y 0

]
be as in Lemma 5.9. Then x = 0 if and only if y = 0.

Proof. Suppose that y = 0 and x ̸= 0, and let

Hn :=

[
n B̃1 e1

eT
1 0

]
for any integer n. Since

φ

([
0 QT e1

(QT e1)
T 0

])
=

[
B̃1 e1

eT
1 0

]
= H1,

Lemma 5.8 implies

σL(Hn)= σL(H1)= σL

([
0 QT e1

(QT e1)
T 0

])
= σL

([
0 e1

eT
1 0

])
= {±1} (5-12)

for all integers n, where the last equality follows from Lemma A.2. Next we observe
that ny = 0 is a standard eigenvalue of Hn with associated eigenvector

ξ =

[
0 −

1
nx

1
]T
.

For n sufficiently large, we get |1/(nx)| ≤ 1, which implies that ξ lies in the Lorentz
cone and hence 0 ∈ σL(Hn). However, this is a contradiction by (5-12). Thus, if
y = 0, then x = 0.

By applying a similar argument to[
n B̃2 e2

eT
2 0

]
,

we may likewise conclude that if x = 0, then y = 0. □

We now arrive at the main result in this section and the final piece for the proof
of Theorem 3.1.

Theorem 5.11. Let φ : M3 → M3 be a linear preserver of the L-spectrum with
associated orthogonal matrix Q. Then, for all u ∈ R2,

φ

([
0 u
0 0

])
=

[
0 Qu
0 0

]
.

Proof. Note that it is enough to prove

φ

([
0 QT e1

0 0

])
=

[
0 e1

0 0

]
and φ

([
0 QT e2

0 0

])
=

[
0 e2

0 0

]
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since {QT e1, QT e2} is a basis for R2. That is, we want to show that B̃1 = B̃2 = 0,
where the matrices

B̃1 =

[
0 x
0 y

]
and B̃2 =

[
−x 0
−y 0

]
are as in Lemma 5.9.

Suppose for sake of contradiction that x ̸= 0, which implies y ̸= 0 by Lemma 5.10.
Let

Hn :=

[
n B̃1 e1

eT
1 0

]
for any integer n. By (5-12), we have σL(Hn)= {±1} for all n.

Let n ̸= 0, µ= ny, and λ= µ+ s for some real number s. Then λ ∈ σbd(Hn) if
and only if there exists some ξ = [ξ1, ξ2]

T
∈ R2 such that−ny nx 1

0 0 0
1 0 −ny − 2s

 ξ1

ξ2

1

 = 0, ∥ξ∥ = 1, and s ≥ 0, (5-13)

or equivalently,
−nyξ1 + nxξ2 + 1 = 0, (5-14)

ξ1 − ny − 2s = 0. (5-15)

We now show that there exists some real number N such that either N is positive
and it is possible to satisfy (5-13) for any integer n > N , or N is negative and it is
possible to satisfy (5-13) for any integer n < N. Let

N :=

{
min(−1/

√
x2 + y2,−3/y) if y > 0,

max(1/
√

x2 + y2,−3/y) if y < 0.

For each n ̸= 0, (5-14) has a solution ξ (n) with ∥ξ (n)∥ = 1 if and only if |n| ≥

1/
√

x2 + y2, which holds whenever |n|> |N |.
Note that (5-15) is equivalent to

s =
ξ1 − ny

2
.

For each ξ (n) with ∥ξ (n)∥ = 1 satisfying (5-14) and for each n in the range specified
above, we know that

ξ
(n)
1 ≥ −1>−3 ≥ N y > ny,

which guarantees that

sn :=
ξ
(n)
1 − ny

2
> 0.

To conclude the argument, choose n in the range specified above so that ξ (n)

and sn satisfy (5-13). Then λ = µ+ sn ∈ σbd(Hn) = {±1}. However, this gives a
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contradiction since

λ=
ξ
(n)
1 + ny

2
<
ξ
(n)
1 − N y

2
≤

1 − 3
2

= −1.

It follows that x = 0 and hence y = 0 by Lemma 5.10. Therefore, B̃1 = B̃2 = 0. □

6. Conclusions

In this paper, we have analyzed the linear preservers of the Lorentz spectrum of
3 × 3 real matrices and proven that every such linear map φ must be of the form

φ(A)=

[
Q 0
0 1

]
A

[
QT 0
0 1

]
for some orthogonal Q ∈ M2, as conjectured in [Bueno et al. 2021]. An immediate
corollary of this result is that the linear preservers of the L-spectrum on M3 must take
interior (resp. boundary) L-eigenvalues to interior (resp. boundary) L-eigenvalues.
Our proof relies on the particular form of 3 × 3 matrices with infinitely many
L-eigenvalues, which makes it difficult to generalize this result to higher dimensions
since n × n matrices with this property can be much more complicated. Thus, it is
likely that different techniques will be necessary to prove the corresponding result
for Mn , but we hope that some of the strategies we developed in this paper will still
be applicable in this case.

Appendix: L-spectrum of some special matrices

Here we provide some results for n × n matrices, where n ≥ 3, and one result
specific to 3 × 3 matrices.

A1. Results for n×n matrices. The following result is an immediate consequence
of Corollary 3.3 in [Bueno et al. 2021].

Lemma A.1. Let

A =

[
cIn−1 0

0 a

]
∈ Mn.

Then

σL(A)=

{
{a} if c > a,
{a, (a + c)/2} if c ≤ a.

The next result follows from Theorem 3.4 in [Bueno et al. 2021].

Lemma A.2. Let

A =

[
0 u
vT a

]
,

where u, v ∈ Rn−1 are not both zero and a ∈ R. Then:
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(1) 0∈σint(A) (resp. 0∈σbd(A)) if and only if u =0 and |a|<∥v∥ (resp. |a|≤∥v∥).

(2) If λ ̸= 0, then λ ∈ σint(A) (resp. λ ∈ σbd(A)) if and only if |λ| > ∥u∥ (resp.
|λ| ≥ ∥u∥) and λ2

− aλ− vT u = 0.

(3) If u ̸= 0, then λ is a nonstandard Lorentz eigenvalue of A if and only if one of
the following holds:

(i) vT u + a∥u∥ −∥u∥
2 > 0 and λ= (a∥u∥ +∥u∥

2
+ vT u)/(2∥u∥).

(ii) ∥u∥
2
+ a∥u∥ − vT u > 0 and λ= (a∥u∥ −∥u∥

2
− vT u)/(2∥u∥).

(4) If u = 0 (and hence v ̸= 0), then λ is a nonstandard Lorentz eigenvalue of A if
and only if

λ ∈

[
a − ∥v∥

2
,

a + ∥v∥

2

]
∩ (0,∞).

Lemma A.3. Let

A =

[
cIn−1 0
vT a

]
, where a, c ∈ R and 0 ̸= v ∈ Rn−1.

Then:

(1) If c < a − ∥v∥, then σint(A)= {a} and

σbd(A)=

[
c + a − ∥v∥

2
,

c + a + ∥v∥

2

]
.

Moreover, σint(A)∩ σbd(A)= ∅.

(2) If c = a − ∥v∥, then σint(A)= {a} = {∥v∥ + c}, and

σbd(A)= [c, ∥v∥ + c].

Therefore, a ∈ σint(A)∩ σbd(A).

(3) If a − ∥v∥< c < a + ∥v∥, then σint(A)= {a, c} and

σbd(A)=

[
c,

c + a + ∥v∥

2

]
.

Therefore, c ∈ σint(A)∩σbd(A). Moreover, a ∈ σint(A)∩σbd(A) if and only if c ≤ a.

(4) If c = a + ∥v∥, then

σint(A)= {a} and σbd(A)= {c}.

(5) If a + ∥v∥< c, then

σint(A)= {a} and σbd(A)= ∅.

Proof. This result follows from Lemma A.2 and the fact that σL(A+γ I )=σL(A)+γ
for all γ ∈ R. □
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Lemma A.4. Let

A =

[
Ã u
0 a

]
,

where Ã ∈ Mn−1and u ∈ Rn−1 are fixed. Then a ∈ σint(A) for all sufficiently large a.

Proof. We know a is an interior L-eigenvalue of A if and only if there exists ξ with
∥ξ∥< 1 such that

( Ã − aI )ξ + u = 0.

For a > ρ( Ã), the matrix Ã − aI is invertible, so we have

ξ = −( Ã − aI )−1u.

Then since det( Ã − aI ) is a polynomial in a of degree n − 1 ≥ 2,

∥ξ∥2
= ∥( Ã − aI )−1u∥

2

=

∥∥∥∥(adj( Ã)− aI )u

det( Ã − aI )

∥∥∥∥2

=
∥ adj( Ã)u∥

2
− 2auT adj( Ã)u + a2

∥u∥
2

det( Ã − aI )2

approaches zero as a → ∞. Thus, we likewise have ∥ξ∥ < 1 for all sufficiently
large a. □

A2. A result for 3 × 3 matrices.

Lemma A.5. Let

A =

 0 c 0
d 0 0
v1 v2 a

 , where cd ≥ 0.

Then

σbd(A)

=


1
2

(
±

√
c

c+d
v1±

√
d

c+d
v2+a+

√
cd

)
if ±

√
c

c+d
v1±

√
d

c+d
v2+a−

√
cd ≥ 0,

1
2

(
±

√
c

c+d
v1∓

√
d

c+d
v2+a−

√
cd

)
if ±

√
c

c+d
v1∓

√
d

c+d
v2+a+

√
cd ≥ 0.

Proof. Let λ ∈ σbd(A). Then λ= µ+ s with s ≥ 0, and there exists ξ = [ξ1, ξ2]
T,

with ∥ξ∥ = 1, such that
−µξ1 + cξ2 = 0,

dξ1 −µξ2 = 0,

v1ξ1 + v2ξ2 + a −µ− 2s = 0.

Assume that µ = 0. Then from the first equation, we get ξ2 = 0 since c ̸= 0.
From the second equation, we get ξ1 since d ̸= 0, a contradiction as ξ ̸= 0. Thus,
µ ̸= 0, and the two first equations yield

(cd −µ2)ξ2 = 0.
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Since ξ2 = 0 would imply ξ1 = 0, contradicting ∥ξ∥ = 1, we have µ= ±
√

cd and

ξ1 =
c

±
√

cd
ξ2 = ±

√
c
d
ξ2.

Thus, since ∥ξ∥ = 1, we have

1 = ξ 2
1 + ξ 2

2 =
c + d

d
ξ 2

2 .

Hence, if µ=
√

cd , then

ξ1 = ±

√
c

c + d
and ξ2 = ±

√
d

c + d
,

and if µ= −
√

cd , then

ξ1 = ±

√
c

c + d
and ξ2 = ∓

√
d

c + d
.

From the third equation, we get

v1ξ1 + v2ξ2 + a ∓
√

cd − 2s = 0,
or equivalently,

s =
(v1ξ1 + v2ξ2)+ a ∓

√
cd

2
,

which yields the claimed boundary L-eigenvalues λ = µ+ s with the condition
s ≥ 0. □
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Lattice size in higher dimensions
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Zachary Kaplan and Jenya Soprunova

(Communicated by Ravi Vakil)

The lattice size of a lattice polytope is a geometric invariant which was formally
introduced in the context of simplification of the defining equation of an algebraic
curve, but appeared implicitly earlier in geometric combinatorics. Previous work
on the lattice size was devoted to studying the lattice size in dimensions 2 and 3.
We establish explicit formulas for the lattice size of a family of lattice simplices
in arbitrary dimension.

1. Introduction

This paper is devoted to computing explicitly the lattice size for a family of lattice
simplices in Rd+1. We start with recalling some basic definitions related to lattice
polytopes.

We say that a point p ∈ Rd is a lattice point if all of its coordinates are integers.
A lattice polytope P ⊂ Rd is the convex hull of finitely many lattice points in Zd.
A lattice segment is a segment that connects two lattice points. Such a segment is
primitive if its only lattice points are its endpoints. The lattice length of a lattice
segment is one less than the number of lattice points it contains (so that a primitive
segment has lattice length 1). A lattice polytope is empty if its only lattice points
are its vertices.

We say that matrix A of size d with integer entries is unimodular if det(A) = ±1.
The set of such matrices is denoted by GL(d, Z). We say that a map L : Rd

→ Rd

is an affine unimodular map if it is a composition of multiplication by a unimodular
matrix and a translation by an integer vector. Such maps preserve the integer
lattice Zd

⊂ Rd. We say that two lattice polytopes in Rd are lattice-equivalent if
one is the image of another under an affine unimodular map.
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x + y = 4

x + y = 0

Figure 1. Lattice polygon P with w(1,1)(P) = 4.

Let h be an integer vector in Rd. For a lattice polytope P ⊂ Rd, we define the
lattice width of P in the direction of h by

wh(P) = max
x∈P

⟨h, x⟩ − min
x∈P

⟨h, x⟩,

where ⟨h, x⟩ is the standard inner product in Rd. Then the lattice width w(P) of P
is the minimum of wh(P) over nonzero integer vectors h ∈ Zd.

In Figure 1, we illustrate the geometric meaning of this definition. Polygon P in
the diagram is squeezed between the lines x + y = 0 and x + y = 4, so its width in
the direction (1, 1) is 4. We also have w(1,0)(P) = 2. Since P has interior lattice
points, we conclude that w(P) = 2.

The lattice size of a lattice polytope is an important geometric invariant of a
lattice polytope that was formally introduced in [Castryck and Cools 2015], but
appeared implicitly earlier in [Arnold 1980; Bárány and Pach 1992; Brown and
Kasprzyk 2013; Lagarias and Ziegler 1991; Schicho 2003]. It was further studied in
[Alajmi and Soprunova 2022; Harrison and Soprunova 2022; Harrison et al. 2022;
Soprunova 2023].

We next reproduce the definition of the lattice size from [Castryck and Cools
2015]. Let 0 ∈ Rd be the origin and let (e1, . . . , ed) be the standard basis of Rd.
The standard simplex 1 ⊂ Rd is defined by 1 = conv{0, e1, . . . , ed}, where “conv”
denotes the convex hull operator.

Definition 1.1. Let P ⊂ Rd be a lattice polytope. The lattice size ls1(P) of P with
respect to the standard simplex 1 is the smallest l such that L(P) is contained in
the l-dilate of 1 for some affine unimodular map L : Rd

→ Rd.

Equivalently, if we let

l1(P) = max
(x1,...,xd )∈P

(x1 + · · · + xd) − min
(x1,...,xd )∈P

x1 − · · · − min
(x1,...,xd )∈P

xd , (1-1)

then ls1(P) is the minimum of l1(L(P)) over affine unimodular maps L : Rd
→ Rd.
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L

Figure 2. Illustration of Example 1.2.

If in the above definition the standard simplex 1 is replaced with the unit cube
□ = [0, 1]

d, we obtain the definition of the lattice size ls□(P) with respect to the
unit cube. Note that the lattice width w(P) can be viewed as the lattice size with
respect to the strip Rd−1

× [0, 1].

Example 1.2. Let P be the polygon with vertices (4, 0), (5, 0), (2, 2), (0, 3), and
(1, 2), as drawn in Figure 2. Define

L(x, y) =

[
1 1

−1 −2

]
·

[
x
y

]
+

[
−3

6

]
.

We get
L(P) = conv{(1, 2), (2, 1), (1, 0), (0, 0), (0, 1)},

so L(P) ⊂ 2□ and L(P) ⊂ 31. Note that P has an interior lattice point, while
□ and 21 do not, so it is impossible to unimodularly map P inside □ or 21. We
conclude that ls□(P) = 2 and ls1(P) = 3.

It was shown in [Harrison and Soprunova 2022; Harrison et al. 2022] that in
dimension 2 both ls1(P) and ls□(P) can be computed using basis reduction (see
[Harrison and Soprunova 2022; Harrison et al. 2022] for definitions and details).
It is further explained in [Harrison and Soprunova 2022] that basis reduction also
computes the lattice size ls□(P) in dimension 3. This leads to fast algorithms
for computing the lattice size in these cases. A counterexample in [Harrison and
Soprunova 2022] demonstrates that a reduced basis does not necessarily compute
ls1(P) in dimension 3.

A well-known classification result of [White 1964] asserts that up to lattice
equivalence empty lattice tetrahedra in R3 are of the form

Tpq =

1 0 0 p
0 1 0 q
0 0 1 1

 ,

where p and q are nonnegative relatively prime integers. (Note that in this notation
Tpq is the convex hull of the column vectors of the matrix.) It was further shown in
[Scarf 1985] that any empty lattice polytope in R3 has lattice width 1.
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While it is not true that a reduced basis computes ls1(P) for P ⊂ R3, it was
shown in [Alajmi and Soprunova 2022] that this is the case for 3-dimensional empty
lattice polytopes. A counterexample was provided in [Alajmi and Soprunova 2022]
demonstrating that the conclusion does not generalize to all polytopes P ⊂ R3 with
lattice width 1.

All the results discussed above concern the lattice size of lattice polytopes in
R2 and R3. In this paper, we consider a family of lattice simplices P in Rd+1 for
arbitrary d and explicitly compute both ls1(P) and ls□(P) under some assumptions
on the parameters of the family. We work with simplices of the form

Tp1...pd =


1 0 . . . 0 0 p1

0 1 . . . 0 0 p2
...

. . .
...

...
...

0 0 . . . 1 0 pd

0 0 . . . 0 1 1

 ,

where p1, . . . , pd are nonnegative integers. These simplices are a natural (d+1)-
dimensional generalization of the tetrahedra Tpq ⊂R3. Each such Tp1,...,pd has lattice
width 1. Also, it is empty if and only if gcd(p1, . . . , pd) = 1, although we will not
be making this assumption. Note that starting with dimension 4 it is no longer true
that every empty lattice simplex has lattice width 1; see [Haase and Ziegler 2000].

Our main results are formulated in Theorems 3.4 and 3.5, where we provide
explicit formulas for both ls1(Tp1,...,pd ) and ls□(Tp1,...,pd ) in terms of p1, . . . , pd

under some restrictions on these parameters. Our methods are elementary and
different from the ones used in earlier work in dimensions 2 and 3.

2. First lemmas

Here we provide the d-dimensional version of the introductory statements about
the lattice size, which were formulated in [Alajmi and Soprunova 2022] for the
case d = 3.

Let P ⊂ Rd be a lattice polytope and A ∈ GL(d, Z). Denote the rows of A by
h1, . . . , hd . Recall the definition of l1(P) in (1-1).

Lemma 2.1. (1) For any h ∈ Zd we have wh(AP) = wAT h(P).

(2) For i = 1, . . . ,d we have wei (AP) = whi (P).

(3) Let (e1, . . . ,ed) be the standard basis of Rd. Then wei (P) ≤ l1(P) for i =

1, . . . ,d.

(4) For i = 1, . . . ,d we have whi (P) ≤ l1(AP).

(5) Let e ∈ Zd be a vector whose entries lie in {0,1}. Then we(P) ≤ l1(P).

(6) Let h be the sum of any nonempty collection of rows of A. Then wh(P)≤ l1(AP).
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Proof. For (1) we have

wh(AP) = max
x∈P

⟨h, Ax⟩ − min
x∈P

⟨h, Ax⟩

= max
x∈P

⟨AT h, x⟩ − min
x∈P

⟨AT h, x⟩ = wAT h(P),

and (2) is a particular case of (1).
To check (3), define l1 := l1(P). Then P ⊂ l11 and hence

wei (P) ≤ wei (l11) = l1 = l1(P).

Thus (4) follows as whi (P) = wei (AP) ≤ l1(AP).
Next we check (5), which is similar to (3):

we(P) ≤ we(l11) = l1 = l1(P).

For (6) let e be the sum of the corresponding standard basis vectors. Then by (1)
and (5)

wh(P) = we(AP) ≤ l1(AP). □

Lemma 2.2. We have:

(1) l1(AP) = maxx∈P⟨h1 + · · · + hd , x⟩ − minx∈P⟨h1, x⟩ − · · · − minx∈P⟨hd , x⟩.

(2) l1(AP) does not depend on the order of rows in A.

(3) l1(AP) = l1(B P), where

B =


h1
...

hd−1

−
∑d

i=1 hi

 .

Proof. (1) and (2) are clear. Let’s check (3) using (1):

l1(B P)= max
x∈P

⟨−hd , x⟩−

d−1∑
i=1

min
x∈P

⟨hi , x⟩−min
x∈P

⟨(−h1−· · ·−hd), x⟩= l1(AP). □

3. Lattice size computation

Recall that
Tp1,...,pd = conv{e1, . . . , ed+1, (p1, . . . , pd , 1)} ⊂ Rd+1,

where pi ∈ Z≥0. Define α = p1 + · · · + pd−1. Assume that pd ≥ 2 and let
k = ⌊(pd − 2)/(α + 1)⌋.

Proposition 3.1. With pi , α, and k defined as above, suppose that pd ≥ α2
− α.

Then ls1(Tp1,...,pd ) ≤ k + 3.
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Proof. Consider unimodular matrix A of size d + 1 defined by

A =



1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 1 0 0
0 0 . . . 0 0 1

k+1 k+1 . . . k+1 −1 pd−α(k+1)−1


.

Then

ATp1,...,pd =



1 0 . . . 0 0 p1

0 1 . . . 0 0 p2
...

...
. . .

...
...

...

0 0 . . . 1 0 pd−1

0 0 . . . 0 1 1
k+1 k+1 . . . k+1 pd−α(k+1)−1 −1


,

and hence

l1(ATp1,...,pd ) = max{k + 2, pd − α(k + 1), α} − min{−1, pd − α(k + 1) − 1}.

Since k = ⌊(pd − 2)/(α + 1)⌋, we have k + 1 > (pd − 2)/(α + 1), which implies
pd−α(k+1)<k+3 and, since pd , k and α are integers, we conclude pd−α(k+1)≤

k + 2. We also have

k + 2 >
pd − 2
α + 1

+ 1 =
pd + α − 1

α + 1
≥

α2
− α + α − 1

α + 1
= α − 1,

where we used the assumption pd ≥ α2
− α. We have checked that

max{k + 2, pd − α(k + 1), α} = k + 2.

Next note that since (pd − 2)/(α + 1) ≥ k we get

pd − 1 − α(k + 1) ≥ pd − 1 − α

(
pd − 2
α + 1

+ 1
)

=
−α2

− 1 + pd

α + 1
≥

−α2
− 1 + α2

− α

α + 1
= −1.

Hence min{−1, pd −α(k +1)−1} = −1 and l1(ATp1,...,pd ) = k +3, which implies
ls1(Tp1,...,pd ) ≤ k + 3. □

Our next goal is to show that under our assumptions we have ls1(Tp1,...,pd )=k+3.
For this, we first prove two lemmas.

Lemma 3.2. Let h=(a1, . . . ,ad+1)∈Rd+1 be a primitive vector with wh(Tp1,...,pd )≤

k+2. Then ad ∈ {0, 1, −1}.
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Proof. We can assume ad ≥ 0. Suppose that ad ≥ 2. We have

max{a1, . . . , ad+1, a1 p1 + · · · + ad pd + ad+1}

− min{a1, . . . , ad+1, a1 p1 + · · · + ad pd + ad+1} ≤ k + 2,

which implies a1 p1 + · · ·+ ad pd ≤ k + 2 and ad − ai ≤ k + 2 for i = 1, . . . , d − 1.
Since ad ≥ 2, the first inequality implies

a1 p1 + · · · + ad−1 pd−1 ≤ k + 2 − 2pd .

The second inequality implies ai ≥ −k for i = 1, . . . , d − 1 and hence

a1 p1 + · · · + ad−1 pd−1 ≥ −k(p1 + · · · + pd−1) = −kα.

Combining this with what we got from the first inequality, we get k+2−2pd ≥−kα.
Hence, using the definition of k, we get

2pd ≤ k + 2 + kα = k(α + 1) + 2 ≤ pd ,

which contradicts the assumption pd > 0. □

Lemma 3.3. Let h = (a1, . . . , ad+1) ∈ Rd+1 be a primitive vector with ad = ±1
and wh(Tp1,...,pd ) ≤ k + 2. Then wh(Tp1,...,pd ) = k + 2.

Proof. We can assume that ad = 1. Suppose that

max{a1, . . . , ad−1, 1, ad+1, a1 p1 + · · · + ad−1 pd−1 + pd + ad+1}

− min{a1, . . . , ad−1, 1, ad+1, a1 p1 + · · · + ad−1 pd−1 + pd + ad+1} ≤ k + 1.

This implies a1 p1+· · ·+ad−1 pd−1+pd ≤k+1 and 1−ai ≤k+1 for i =1, . . . , d−1.
Hence for such i we have ai ≥ −k and

−kα + pd ≤ a1 p1 + · · · + ad−1 pd−1 + pd ≤ k + 1,

which implies −kα + pd ≤ k +1. Hence pd ≤ kα + k +1 = k(α +1)+1 ≤ pd −1,
and this is impossible. □

Theorem 3.4. Let α = p1+· · ·+ pd−1, where all pi are positive and pd ≥ 2. Define
k = ⌊(pd − 2)/(α + 1)⌋. Suppose that pd ≥ α2

− α. Then ls1(Tp1,...,pd ) = k + 3.

Proof. Suppose that there exists a unimodular map L that maps Tp1,...,pd inside
(k+2)1 and let A be the corresponding unimodular matrix. Then by Lemma 2.1 for
each of its rows h we have wh(Tp1,...,pd ) ≤ k + 2. We also have the same inequality
for the sum of any nonempty collection of rows of A. By Lemma 3.2 each of the
entries in the d-th column of A is 0, 1, or −1, and the same applies to the sum
of any collection of entries in the d-th column of A. Hence, up to permutation
of rows, the d-th column of A is (0, 0, . . . , 0, ±1)T or (0, 0, . . . , 0, 1, −1)T and
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by Lemma 2.2 we can assume that it is the former. Then by Lemma 3.3 we have
wed+1(L(Tp1,...,pd )) = k + 2. Since L(Tp1,...,pd ) ⊂ (k + 2)1, we conclude that

(0, . . . , k + 2) ∈ L(Tp1,...,pd ).

Similarly, we have we1+···+ed+1(L(Tp1,...,pd ))=k+2 and, together with L(Tp1,...,pd )⊂

(k+2)1, this implies that L(Tp1,...,pd ) contains the origin. Hence L(Tp1,...,pd ) and,
therefore, Tp1,...,pd contains an edge of lattice length k + 2. All the edges of
Tp1,...,pd are primitive, except, possibly, for the one connecting points (0, . . . , 1)

and (p1, . . . , pd , 1), whose lattice length is gcd(p1, . . . , pd). Hence we conclude
that gcd(p1, . . . , pd) = k + 2. Using the assumption pd ≥ α2

− α we get

k + 2 = gcd(p1, . . . , pd) ≤ p1 + · · · + pd−1 = α ≤
pd − 2
α + 1

+ 2 < k + 3.

Note that since all the pi are positive, we have gcd(p1, . . . , pd)< p1+· · ·+ pd−1

unless d = 2 and p2 is a multiple of p1. When the inequality is strict we arrive at a
contradiction since the integer p1 + · · · + pd−1 is strictly between the consecutive
integers k + 2 and k + 3.

It remains to consider the case when d = 2, p2 is a multiple of p1, and k + 2 =

α = p1. We have ⌊(p2 − 2)/(p1 + 1)⌋ = k = p1 − 2 and hence

p2 − 2 = (p1 + 1)(p1 − 2) + r,

where 0 ≤ r ≤ p1. We get p2 = p2
1 − p1 + r and, since p2 is a multiple of p1, there

are two options: p2 = p2
1 and p2 = p2

1 − p1.
Suppose first p2 = p2

1 and let h = (a1, a2, a3) be a direction with wh(Tp1 p2) ≤

k + 2 = p1. By Lemma 3.2 we have a2 = 0, ±1. For a2 = −1 we get

max{a1, −1, a3, a1 p1 − p2
1 + a3} − min{a1, −1, a3, a1 p1 − p2

1 + a3} ≤ p1,

which implies a1 + 1 ≤ p1 and −a1 p1 + p2
1 ≤ p1, so we conclude that a1 = p1 − 1.

Plugging in this value for a1 we get

max{p1 − 1, −1, a3, a3 − p1} − min{p1 − 1, −1, a3, a3 − p1} ≤ p1,

which implies a3 +1 ≤ p1 and p1 −1−(a3 − p1) ≤ p1, so a3 = p1 −1. We conclude
that for a2 = −1 the only h with wh(Tp1 p2) ≤ p1 is h = (p1 − 1, −1, p1 − 1)

and for such h we get wh(Tp1 p2) = k + 2. Similarly, for a2 = 1 such direction is
h = (1 − p1, 1, 1 − p1).

Hence in this case we can only use as rows of A vectors ±(p1 − 1, −1, p1 − 1)

and vectors whose second component is 0. Further, we can assume that the second
column of A is (0, 0, ±1)T, and the third row is ±(p1 − 1, −1, p1 − 1). Then the
sum of the third row with any of the first two rows will also have to be of the same
form as the third row, which would imply det A = 0.
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We next consider the last case p2 = p2
1 − p1. Recall that we have k +2 = p1. By

Lemmas 3.2 and 3.3 if wh(Tp1 p2) ≤ p1 for h = (a1, a2, a3) then a2 = 0, ±1, and
if a2 = ±1 we have wh(Tp1 p2) = p1. Let’s further investigate the case a2 = 0. We
have

max{a1, 0, a3, a1 p1 + a3} − min{a1, 0, a3, a1 p1 + a3} ≤ p1,

where we can assume a1 ≥ 0. Hence a1 p1 ≤ p1, which implies a1 = 0 or 1, and
in the latter case the width is p1. We conclude that the only direction h with
wh(Tp1 p2) < p1 is (0, 0, ±1).

As before, we can assume that the second column in matrix A is (0, 0, 1)T.
Denote the rows of A by h1, h2, and h3. Then out of the widths of Tp1 p2 in the
direction of h1 and h2, only one can be strictly less than p1. We can assume that
this happens in the direction of h1. We also know that the width of Tp1 p2 in the
direction of h3 and h1 +h2 +h3 is p1. We can now conclude that L(Tp1 p2) contains
the triangle

conv{(0, 0, 0), (0, p1, 0), (0, 0, p1)}.

Note that we assumed that pd ≥ 2, which implies p2
1 − p1 = p2 ≥ 2 and hence

p1 ≥ 2. Hence our conclusion implies that Tp1 p2 contains a lattice triangle with
three nonprimitive sides, and this contradiction completes the argument. □

We next use the work above to compute ls□(Tp1,...,pd ).

Theorem 3.5. Let α = p1+· · ·+ pd−1, where all pi are positive and pd ≥ 2. Define
k = ⌊(pd − 2)/(α + 1)⌋. Suppose that pd ≥ α2

− α. Then ls□(Tp1,...,pd ) = k + 2.

Proof. Let A be the matrix from Proposition 3.1. Then wed (ATp1,...,pd ) = 1,
wei (ATp1,...,pd ) = pi for i = 1, . . . , d − 1, and

wed+1(ATp1,...,pd )=max{k+1, pd−α(k+1)−1}−min{−1, pd−α(k+1)−1}=k+2,

as shown in the proof of Proposition 3.1. It is also checked there that α ≤ k +2, and
hence after a translation by the vector v = (0, . . . , 0, 1)T we get ATp1,...,pd + v ⊂

[0, k + 2]
d+1, which implies that ls□(P) ≤ k + 2.

Suppose next there exists a unimodular map L : Rd
→Rd such that L(Tp1,...,pd )⊂

[0, k + 1]
d+1. Then the width of Tp1,...,pd in the direction of each of the rows of the

corresponding matrix A is at most k + 1, but by Lemmas 3.2 and 3.3 this implies
that the d-th entry of each row of A is zero, so det A = 0. □

Note that we have checked in Theorems 3.4 and 3.5 that there exists a matrix A
that computes both ls1(Tp1,...,pd ) and ls□(Tp1,...,pd ). While it was shown in [Harri-
son and Soprunova 2022; Harrison et al. 2022] that this is always the case when
P ⊂ R2, a counterexample for P ⊂ R3 was provided in [Harrison and Soprunova
2022].
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On the joint evolution problem
for a scalar field and its singularity

Aditya Agashe, Ethan Lee and Shadi Tahvildar-Zadeh

(Communicated by Martin Bohner)

In the classical electrodynamics of point charges in vacuum, the electromagnetic
field, and therefore the Lorentz force, is ill-defined at the locations of the charges.
Kiessling resolved this problem by using the momentum balance between the
field and the particles, extracting an equation for the force that is well-defined
where the charges are located, so long as the field momentum density is locally
integrable in a neighborhood of the charges.

We examine the effects of such a force by analyzing a simplified model in
one space dimension. We study the joint evolution of a massless scalar field
together with its singularity, which we identify with the trajectory of a particle.
The static solution arises in the presence of no incoming radiation, in which
case the particle remains at rest forever. We will prove the stability of the static
solution for particles with positive bare mass by showing that a pulse of incoming
radiation that is compactly supported away from the point charge will result in
the particle eventually coming back to rest. We will also prove the nonlinear
instability of the static solution for particles with negative bare mass by showing
that an incoming radiation with arbitrarily small amplitude will cause the particle
to reach the speed of light in finite time. We conclude by discussing modifications
to this simple model that could make it more realistic.

1. Introduction and main result

Classical electromagnetism has a fundamental problem: for a charged point-particle
in an electromagnetic field that is at least partly sourced by that particle, the field is
not defined at the location of the particle. Because the Lorentz force that the field
exerts on the particle depends on the values of the field at the particle’s location, the
force is also undefined where it’s needed, i.e., for the particle’s equations of motion
to make sense. This is the infamous radiation-reaction problem. This problem has
been the subject of intense study by some of the world’s most renowned physicists
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and mathematicians, including Poincaré [1906] and Dirac [1938], for more than
a century. An excellent account of this endeavor can be found in [Spohn 2004],
where an entire chapter is devoted to recounting its history.1

An important breakthrough came when, following up on some ideas of Poincaré
[1906], Kiessling [2019] showed that if one postulated local conservation laws to
hold for the total (field + particle) energy density-momentum density-stress tensor,
i.e., (employing the Einstein summation convention, where repeated indices are
summed over their range)

∂µT total
µν = 0, where T total

µν = T field
µν + T particle

µν , (1)

(once these expressions are properly defined) then the force can be determined
using the law of momentum balance, provided the field momentum density is
locally integrable in a neighborhood of the charge. This integrability assumption
rules out the classical electromagnetic vacuum law E = D, B = H postulated by
Maxwell, but admits others, such as the Bopp–Landé–Thomas–Podolsky (BLTP
for short) vacuum law [Bopp 1940; 1942; Landé 1941; Landé and Thomas 1941;
Podolsky 1942].

It is of interest to study the effect of the Kiessling force on the motion of
an electromagnetic point-charge. In three space dimensions using the standard
electromagnetic vacuum laws, this is not possible. One can use other vacuum laws
in three space dimensions, such as BLTP, that do meet Kiessling’s criterion, and for
which one can prove local well-posedness of the joint field and particle dynamics
[Kiessling 2019; Kiessling and Tahvildar-Zadeh ≥ 2024] as well as global existence
for the solution to the scattering problem of a single particle by a smooth potential
[Hoang et al. 2021]. However, the expression for the force in the BLTP case is
quite complicated, which makes it hard to figure out what the particle trajectories
actually look like. On the other hand, by a simple scaling analysis, it is easy to see
that Kiessling’s criterion may be satisfied for Maxwell’s vacuum law, so long as one
works in one space dimension. Since there is however no viable electromagnetism
in one space dimension, we instead turn to the simpler model of a scalar charge.
Such a model has been proposed before by many authors; see, e.g., [Elskens et al.
2009]. To simplify matters even further, we will be focusing on the case of a
single particle perturbed by scalar radiation. Following Weyl’s ideas [1921] on
singularity theories of matter, we will take the evolving singularity of the scalar
field to represent the path of the particle in space-time. This is thus a joint evolution
problem for a scalar field u(t, s), and the trajectory of its singularity, s = q(t). The
governing equations are as follows (see [Elskens et al. 2009, equations (7)–(9)]):

1It is outside the scope of this article to mention all the various directions taken by researchers to
resolve this issue. Interested readers are referred to [Spohn 2004] and its copious bibliography.
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the field satisfies 
∂2

t u − ∂2
s u = aδ(s − q(t)),

u(0, s) = −
a
2 |s| + V0(s),

∂t u(0, s) = V1(s)
(2)

(δ is the Dirac delta-function), while the equations of motion for the particle are
q̇ = p/(m

√
1 + p2/m2),

ṗ = f (t, q, q̇),

q(0) = 0,

q̇(0) = 0

(3)

(the speed of light has been set equal to 1).
Here, (2) is the Cauchy problem for a massless wave equation sourced by the

particle. We have added V0(s) and V1(s) to the initial data to represent smooth
incoming radiation that is compactly supported away from the point charge. Thus
V0, V1 ∈ C∞

c (R \ {0}). Real constants a and m represent the charge and the (bare)
rest mass of the particle. Equations (3) are simply Newton’s equations of motion
with Einstein’s special-relativistic relation between momentum and velocity instead
of Newton’s. By f we denote the force exerted by the field on the particle, and its
precise expression needs to be determined using another principle. Here, following
Kiessling, we will use momentum conservation to determine f .

Remark 1. We note that the above system of equations is not fully Lorentz-
covariant: the right-hand side of the wave equation in (2) does not transform
correctly under a Lorentz transformation. This is a defect of the model (which
was also pointed out in [Elskens et al. 2009]). This defect can be corrected, but
the resulting system becomes harder to analyze. Some of the results in this paper
have also been obtained for the fully relativistic version, and will appear elsewhere
[Frolov et al. 2023].

The initial conditions in (3) can always be satisfied by going into the initial rest
frame of the particle. We will use Kiessling’s prescription to determine the force
f on the particle. This will depend on the field u, which makes (2)–(3) a coupled
system of equations for the joint evolution of the field and its singularity.

Consider first the case of no incoming radiation, i.e., V0 ≡ 0 and V1 ≡ 0. In that
case, u = −

a
2 |s|, where q(t) = 0 for all t is clearly a time-independent solution

to (2), i.e., the particle remains at rest forever. We shall see that in this case, f ≡ 0.
In this paper we will prove:

Theorem 2. (a) Suppose m > 0. For all smooth initial data (V0, V1) for (2) that
are compactly supported away from the origin, there exists a solution (u(t, s), q(t))
to the joint field-particle evolution problem (2)–(3), with the property that
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(i) the field u is Lipschitz everywhere and the particle trajectory q is C1,

(ii) u is at least C1 away from the particle path s = q(t), and

(iii) for all ϵ > 0, there exists T > 0 such that t > T implies |q̇(t)| < ϵ.

(b) Suppose m < 0. For all ϵ > 0, there exists smooth, compactly supported initial
data (V0, V1) for (2), with ∥V0∥C1(R) +∥V1∥C0(R) < ϵ, and a solution (u(t, s), q(t))
to the joint field-particle evolution problem (2)–(3), with the property that

(i) the field u is Lipschitz everywhere and the particle trajectory q is C1,

(ii) u is at least C1 away from the particle path s = q(t), and

(iii) the particle reaches the speed of light in finite time, i.e., there exists T > 0 such
that |q̇(T )| = 1.

Outline of the proof. In Section 2 we solve the field equations (2) assuming the
trajectory s = q(t) of the singularity is given. We do this by decomposing the field
into a smooth part depending only on the incoming radiation, and a singular part
sourced by the particle. In Section 3 we use this field to compute the Kiessling
force f in (3), and show that it depends only on the smooth part of the field. We can
thus eliminate the field from (3) and have q(t) be the only unknown. In Section 4
we study (3) by turning it into a dynamical system in the plane and analyzing its
phase portrait, which will allow us to prove the stability claim in Section 5 and the
instability claim in Section 6.

We conclude in Section 7 by speculating on the mechanism for instability,
and propose various modifications to our model that could perhaps avoid such
instabilities.

2. Solving the field equations

Proposition 3. For any given trajectory q(t) with |q̇| < 1, q(0) = 0, and q̇(0) = 0,
the initial value problem 

∂2
t u − ∂2

s u = aδ(s − q(t)),
u(0, s) = −

a
2 |s| + V0(s),

∂t u(0, s) = V1(s)
(4)

has the unique solution

u(t, s) =
a
2


s + V (t, s), s < −t,
T+(s + t) − t + V (t, s), −t < s < q(t),
T−(s − t) − t + V (t, s), q(t) < s < t,
−s + V (t, s), s > t,

(5)

where the functions T± are defined by

T±(q(x) ± x) = x (6)
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for all x , i.e., T± is the inverse function to q(x) ± x (which exists and is C1 so long
as |q̇| < 1), and

V (t, s) =
1
2
(V0(s − t) + V0(s + t)) +

1
2

∫ s+t

s−t
V1(y) dy. (7)

Furthermore, u(t, s) is at least C1 away from the path s = q(t).

Proof. Define 9(t, s) and 8(t, s) as solving the equations
∂2

t 8 − ∂2
s 8 = 0,

8(0, s) = −
a
2 |s| + V0(s),

∂t8(0, s) = V1(s),


∂2

t 9 − ∂2
s 9 = aδ(s − q(t)),

9(0, s) = 0,

∂t9(0, s) = 0.

(8)

Furthermore, define V (t, s) and U (t, s) as solving the equations
∂2

t V − ∂2
s V = 0,

V (0, s) = V0(s),
∂t V (0, s) = V1(s),


∂2

t U − ∂2
s U = 0,

U (0, s) = −
a
2 |s|,

∂tU (0, s) = 0.

(9)

We thus have that 8 = U+V and u = 9+8. Note that because V0 and V1 are
smooth functions, V(t, s) is smooth as well. Hence, V(t, s) contains no singularities.

We can solve for V and U (and hence 8) by using d’Alembert’s formula. We
then have

V (t, s) =
1
2
(V0(s − t) + V0(s + t)) +

1
2

∫ s+t

s−t
V1(y) dy, (10)

U (t, s) = −
a
4
(|s − t | + |s + t |) =


a
2 s, s ≤ −t,

−
a
2 t, −t < s < t,

−
a
2 s, s ≥ t.

(11)

We can solve for 9 with Duhamel’s principle. Define W (t, s, τ ) as

9(t, s) =

∫ t

0
W (t − τ, s, τ ) dτ. (12)

It follows that 
Wt t − Wss = 0,

W (0, s, τ ) = 0,

Wt(0, s, τ ) = aδ(s − q(τ )).

(13)

To solve for W, we apply d’Alembert’s formula. We have

W (t, s, τ ) =
1
2

∫ s+t

s−t
aδ(y − q(τ )) dy =

a
2
χ[s−t,s+t](q(τ )), (14)

where χ is the characteristic function, i.e.,

χ[a,b](x) =

{
1, a ≤ x ≤ b,

0, otherwise.
(15)
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t (t,s)
q(t)

T+(s+t)

S

Figure 1. Retarded time T+.

To integrate W to get 9(t, s), we consider the backward light cone of the
event (t, s). The τ for which (τ, q(τ )) is in this light cone will contribute a

2 dτ to
the integral. See Figure 1.

Because q(0) = 0 and c = 1, we know q(t) is inside the forward light cone
drawn from (0, 0). As a result of this, 9(t, s) = 0 when s > t and s < −t . Inside
the forward light cone of the origin, it is certainly true that the backward light cone
of the event (t, s) will intersect with s = q(t). Moreover, it intersects exactly once
(going from time 0 to t , once q(t) leaves the backward light cone of the event (t, s),
it cannot reenter due to the fact that c = 1). We must determine the point at which it
intersects, the so-called retarded time. To the left of q(t), this retarded time τ2 is the
solution to q(τ2)+τ2 = s+t , or T+(s+t) for short. The solution is hence a

2 T+(s+t).
To the right of q(t), this retarded time τ1 is the solution to q(τ1) − τ1 = s − t , or
T−(s − t) for short. The solution is hence a

2 T−(s − t).
We then get the following expression for 9:

9(t, s) =
a
2


0, s < −t,
T+(s + t), −t < s < q(t),
T−(s − t), q(t) < s < t,
0, s > t.

(16)

We see from here that 9, like U, is C0 but not C1 because it has two singularities
at s + t = 0 and s − t = 0, i.e., along the light cone of the origin. We will see in
Proposition 4 that when we add 9 and U, the singularities along the light cone
cancel each other out.

The full solution u(t, s) is thus

u(t, s) =
a
2


s + V (t, s), s < −t,
T+(s + t) − t + V (t, s), −t < s < q(t),
T−(s − t) − t + V (t, s), q(t) < s < t,
−s + V (t, s), s > t,

(17)

where V is as defined in (10). □

We expect u(t, s) to have singularities only at s = q(t). We pause for a moment
to show that u has no singularities along the lines s = −t and s = t .
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Proposition 4. For u(t, s) given by (5), u(t, s) is C1 across s = −t and s = t .

Proof. Because V0 and V1 are smooth, V (t, s) is smooth. Hence, it suffices to look
at the singular part of u(t, s). Let

w(t, s) = U (t, s) + 9(t, s) =
a
2


s, s < −t,
T+(s + t) − t, −t < s < q(t),
T−(s − t) − t, q(t) < s < t,
−s, s > t.

(18)

We will first show w(t, s) is C1 across s = −t . We have

∂sw|(s=−t)− = ∂s

(a
2

s
)

=
a
2
, ∂tw|(s=−t)− = ∂t

(a
2

s
)

= 0. (19)

Recall that T+(s + t) = τ2, where τ2 solves

q(τ2) + τ2 = s + t. (20)

Using implicit differentiation by s and t yields

∂sτ2 q̇(τ2) + ∂sτ2 = 1, ∂tτ2 q̇(τ2) + ∂tτ2 = 1 (21)

respectively. At the line s = −t , we have τ2 = 0, so q̇(τ2) = q̇(0) = 0. Hence

∂sτ2 = ∂tτ2 = 1. (22)
We thus have

∂sw|(s=−t)+ =
a
2
∂s T+(s+t) =

a
2
∂sτ2 =

a
2
, (23)

∂tw|(s=−t)+ =
a
2
(∂t T+(s+t)−1) =

a
2
(∂tτ2−1) = 0. (24)

Comparing with (19) shows that w is C1 across s = −t .
The proof that w(t, s) is C1 across s = t is completely analogous. □

3. Computing the Kiessling force

We would like to combine the solution (5) for u(t, s) with (3) to find a system of
ODEs for q(t). To do this, we need to work out the Kiessling force f in (3).

We begin by recalling that Kiessling postulates the local conservation of total
energy-momentum for the field and particle system:

∂µT total
µν = 0. (25)

Here, T total
µν is the energy density-momentum density-stress tensor (or energy-

momentum tensor, for short) for the field and particle system. To find the energy-
momentum tensor for the field, we start with the Lagrangian. The Lagrangian for
the massless scalar field is

L =
1
2ηµν∂µu∂νu. (26)
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Here, η = diag(1, −1) is the Minkowski metric. The energy-momentum tensor for
the field is defined as

T field
µν = 2 ∂L

∂ηµν
− ηµνL, (27)

and thus in this case

T field
µν = ∂µu∂νu −

1
2ηµν∂αu∂αu. (28)

Since u is expected to be singular on the worldline of the particle, the above is only
well-defined away from the particle path, but our assumptions on the field are such
that T field can be continued into the particle path as a spacetime distribution.

The energy-momentum tensor for the particle on the other hand is defined as a
distribution on spacetime that is concentrated on the worldline xµ

= zµ(τ ) of the
particle (τ is the arclength parameter):

T particle
µν := m

∫
uµuνδ

(2)(x − z(τ )) dτ =
m
u0 uµuνδ(s − q(t)), (29)

where u is the unit tangent to the worldline of the particle

uµ
:= dzµ/dτ, uµuµ

= 1. (30)

The definition of T particle is such that

∂µT particle
µν = fν(t)δ(s − q(t)) (31)

holds, where the spacetime covector fν is the 2-force acting on the particle; see
[Kiessling 2019, equation 72].

Let us take a second to consider how this relates to the f (t, q, q̇), the force on
the particle, which appears in (3). There, f (t, q, q̇) is clearly the spatial component
of a spacetime (contravariant) vector. We therefore must have

f (t, q(t), q̇(t)) = f 1(t) = − f1(t) (32)

since we have chosen the signature (+, −) for the Minkowski metric.
Hence, setting ν = 1,

∂µT particle
µ1 (t, s) = − f (t, q(t), q̇(t))δ(s − q(t)). (33)

Going back to the energy-momentum tensor for the field, we have, for ν = 1,

∂µT field
µ1 = ∂0T field

01 + ∂1T field
11 = ∂tπ − ∂sτ. (34)

Using (25), we have

0 = ∂µT total
µ1 = ∂µT field

µ1 + ∂µT particle
µ1 = ∂tπ − ∂sτ − f (t, q, q̇)δ(s − q(t)). (35)

Rearranging this gives us the momentum-balance law

∂tπ − ∂sτ = f (t, q, q̇)δ(s − q(t)). (36)
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t q(t)−ϵ q(t) q(t)+ϵ

T2

T1
�

S

[1,q̇]

[0,1]

[−1,−q̇]

[0,−1]

Figure 2. Region of integration for the momentum-balance equation.

From (28) we have
π(t, s) = T field

01 = usut , (37)

τ(t, s) = T field
11 =

1
2(u2

s + u2
t ). (38)

Proposition 5. Assume that the field u is Lipschitz continuous in a tubular neigh-
borhood of the C1 path (t, q(t)) of the particle, and that u is C1 on either side of
the path. Then the force appearing in (36) is

f (t, q(t), q̇(t)) = −q̇[π(t, s)]s=q(t) − [τ(t, s)]s=q(t), (39)

where [ · ]s=q(t) denotes the jump across the path.

Proof. Note that the assumptions imply that π and τ are bounded and can at most
have a jump discontinuity across the path, so that the right-hand side of (39) is
well-defined. Let ϵ > 0 and T2 > T1 ≥ 0. We will integrate (36) over the region
� = {(t, s) | T1 ≤ t ≤ T2, q(t)− ϵ ≤ s ≤ q(t)+ ϵ} and then take the limit as ϵ goes
to 0. After integrating and taking the limit, the right-hand side of (36) becomes∫ T2

T1

f (t, q(t), q̇(t)) dt. (40)

After integrating and using Green’s theorem, the left-hand side of (36) becomes∫ q(T2)+ϵ

q(T2)−ϵ
π(T2, s) ds −

∫ q(T1)+ϵ

q(T1)−ϵ
π(T1, s) ds −

∫ T2

T1

q̇π(t, s) + τ(t, s)
∣∣∣
s=q(t)+ϵ

dt

+

∫ T2

T1

q̇π(t, s) + τ(t, s)
∣∣∣
s=q(t)−ϵ

dt.
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Because π is locally integrable, the first two terms go to 0 as ϵ → 0. Taking the
limit as ϵ goes to 0 in the other two terms gives us

−

∫ T2

T1

[q̇π(t, s) + τ(t, s)]s=q(t) dt (41)

for the left-hand side. Because T1 and T2 were arbitrary, we therefore have

f (t, q(t), q̇(t)) = −q̇[π(t, s)]s=q(t) − [τ(t, s)]s=q(t), (42)

completing the proof. □

Proposition 6. Assume u(t, s) is a solution to the joint evolution problem (2)–(3).
The Kiessling force in (3) is given by

f (t, q, q̇) = aVs(t, q) −
a2

2
q̇

1 − q̇2 . (43)

Proof. By Proposition 5, the force is

f (t, q(t), q̇(t)) = −q̇[π ]s=q(t) − [τ ]s=q(t) = −q̇[usut ]s=q(t) −
1
2 [u2

s + u2
t ]s=q(t),

(44)
using u(t, s) as given by (5). Substituting in u = V + w gives us

[ut us]s=q(t) = Vt [ws]s=q(t)+Vs[wt ]s=q(t)+[wswt ]s=q(t), (45)[ 1
2 u2

t +
1
2 u2

s
]

s=q(t) =
1
2 [w2

t ]s=q(t)+
1
2 [w2

s ]s=q(t)+Vs[ws]s=q(t)+Vt [wt ]s=q(t), (46)

where we’ve used the fact that V is smooth. To determine the necessary values, we
will first compute ws |s=q(t)− , ws |s=q(t)+ , wt |s=q(t)− , and wt |s=q(t)+ . We have

ws |s=q(t)− = ∂s

(
a
2
(T+(s + t) − t)

)
=

a
2

1
q̇(t) + 1

, (47)

ws |s=q(t)+ = ∂s

(
a
2
(T−(s − t) − t)

)
=

a
2

1
q̇(t) − 1

, (48)

wt |s=q(t)− = ∂t

(
a
2
(T+(s + t) − t)

)
= −

a
2

q̇(t)
q̇(t) + 1

, (49)

wt |s=q(t)+ = ∂t

(
a
2
(T−(s − t) − t)

)
= −

a
2

q̇(t)
q̇(t) − 1

. (50)

Thus, our final results for [ws]s=q(t), [wt ]s=q(t), [wswt ]s=q(t), [w2
s ]s=q(t), and

[w2
t ]s=q(t) are

[ws]s=q(t) =
a
2

(
1

q̇(t) − 1
−

1
q̇(t) + 1

)
=

a
q̇(t)2 − 1

, (51)

[wt ]s=q(t) = −
aq̇(t)

2

(
1

q̇(t) − 1
−

1
q̇(t) + 1

)
= −

aq̇(t)
q̇(t)2 − 1

, (52)
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[wswt ]s=q(t) = −
a2q̇(t)

4

(
1

(q̇(t) − 1)2 −
1

(q̇(t) + 1)2

)
= −

a2q̇(t)2

(q̇(t)2 − 1)2 , (53)

[w2
t ]s=q(t) =

a2

4

((
q̇(t)

q̇(t) − 1

)2

−

(
q̇(t)

q̇(t) + 1

)2)
=

a2q̇(t)3

(q̇(t)2 − 1)2 , (54)

[w2
s ]s=q(t) =

a2

4

((
1

q̇(t) − 1

)2

−

(
1

q̇(t) + 1

)2)
=

a2q̇(t)
(q̇(t)2 − 1)2 . (55)

Inserting these values into (44) gives us

f (t, q(t), q̇(t)) = aVs(t, q(t)) −
a2

2
q̇(t)

1 − q̇(t)2 , (56)

completing the proof. □

Note that the first term represents the force that the external field is exerting on
the particle. That is, the first term is usually taken to be the force acting on a scalar
particle. The second term represents the self-force (the force the particle exerts on
itself), which here is in the opposite direction of the motion.

4. Equations of motion as a dynamical system

We can now look at the equations of motion for the particle, which are{
q̇ = p/(m

√
1 + p2/m2),

ṗ = aVs(t, q(t)) −
1
2a2q̇(t)/(1 − q̇(t)2).

(57)

We substitute the expression for q̇ into the equation of ṗ, which results in

ṗ = aVs(t, q(t)) −
a2

2
p
m

√
1 +

p2

m2 . (58)

In addition to this, let us rewrite Vs(t, q(t)). Recall that

V (t, s) =
1
2
(V0(s + t) + V0(s − t)) +

1
2

∫ s+t

s−t
V1(x) dx . (59)

Hence, we have

Vs(t, s) =
1
2
(V̇0(s + t) + V̇0(s − t) + V1(s + t) − V1(s − t)). (60)

Let us further define F(s) and G(s) as{
F(s) = V̇0(s) + V1(s),
G(s) = V̇0(s) − V1(s).

(61)

From our definitions of F and G, we can rewrite our equations of motion, specifically
the expression for ṗ. It now becomes{

q̇ = p/(m
√

1 + p2/m2),

ṗ =
1
2a(F(q + t) + G(q − t)) −

1
2a2(p/m)

√
1 + p2/m2.

(62)
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We can further simplify our equations using a change of variables so that we can
get rid of the square roots. We will let p/m = tan θ , so our new equations become{

q̇ = sin θ,

θ̇ =
a

2m
(F(q + t) + G(q − t)) cos2 θ −

a2

2m
sin θ.

(63)

To get an autonomous system, we define new unknowns,{
d(t) = q(t) + t,
b(t) = q(t) − t,

(64)

and write the system of three equations as
ḋ = sin θ + 1,

ḃ = sin θ − 1,

θ̇ =
a

2m
(F(d) + G(b)) cos2 θ −

a2

2m
sin θ.

(65)

To solve this, we need to look for a solution (b, d, θ) such that
b(0) = 0,

d(0) = 0,

θ(0) = 0.

(66)

These are the consequences of our initial conditions q(0) = 0 and q̇(0) = 0. Further-
more, we know the following limits for each variable: 0<d(t)<2t , −2t <b(t)<0,
−

π
2 ≤ θ(t) ≤

π
2 .

We will split this into two cases: one where the bare mass, m, is positive and
one where it is negative. For the first, we will prove that the solution will always
be stable. For the second, we will show a case where the solution is unstable.

5. Proof of stability for positive bare mass

In the case of positive bare mass, we are concerned with (65) with m > 0. Recall that
because F(d) and G(b) are defined as in (61), they must be compactly supported.
Furthermore, note that it must always be the case that ḋ = sin θ + 1 ≥ 0 and that
ḃ = sin θ − 1 ≤ 0. Hence, it suffices to look only at the region where b ≤ 0 and
d ≥ 0. We will define [bL , bR] such that −∞ < bL < bR ≤ 0 and G(b) = 0 for b
outside [bL , bR]. Similarly, we will define [dL , dR] such that 0 ≤ dL < dR < ∞ and
F(d) = 0 for d outside [dL , dR]. Based on the fact that ḋ ≥ 0 and ḃ ≤ 0, Figure 3
shows a rough sketch of the trajectory of the solution projected onto the (b, d)-plane.

Based on this, we will divide this analysis into three regions: before the radiation,
during the radiation, and after the radiation. In the first region, G(b) = F(d) = 0,
so (65) reduces to 

ḋ = sin θ + 1,

ḃ = sin θ − 1,

θ̇ = −
a2

2m
sin θ.

(67)
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(b2,d2)
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Figure 3. Projection of trajectory of the solution to (65) in the
(b, d)-plane.

One can check that the unique solution to (67) with initial conditions in (66) is
d(t) = t,
b(t) = −t,
θ(t) = 0.

(68)

Hence, the particle will have the following conditions entering the second region:
b(t1) = b1,

d(t1) = d1,

θ(t1) = 0,

(69)

where t1 >0. In the second region, note that when θ =
π
2 , we have θ̇ =−a2/(2m)<0.

Similarly, when θ = −
π
2 , we have θ̇ = a2/(2m) > 0. Hence, the trajectory can

never cross θ =
π
2 and θ = −

π
2 . The particle will thus end up with the following

conditions entering the third region:
b(t2) = b2,

d(t2) = d2,

θ(t2) = θ2,

(70)

where t2 > 0 and −
π
2 < θ2 < π

2 . Hence, the third interval will amount to solving
the following set of ODEs with conditions specified in (70):

ḃ = sin θ − 1,

ḋ = sin θ + 1,

θ̇ = −
a2

2m
sin θ.

(71)

We solve the third ODE explicitly in Proposition 7.

Proposition 7. Suppose we have (71) with initial conditions in (70).

(a) If θ2 = 0, θ(t) = 0 for t > t2.

(b) If π
2 > θ2 > −

π
2 and θ2 ̸= 0, then limt→∞ θ(t) = 0.



176 ADITYA AGASHE, ETHAN LEE AND SHADI TAHVILDAR-ZADEH

Proof. We know θ(t) = 0 is a trivial solution which satisfies θ(t2) = 0. Noting that
−a2 sin θ/(2m) and its derivative with respect to θ are continuous everywhere, we
see that such a solution is unique. Hence, (a) follows.

For (b), assume θ2 > 0. The proof is similar for θ2 < 0. If θ = 0 for some time
t3 > t2, we are left with (a), and θ(t) = 0 < ϵ for t > t3. Hence, assume θ > 0 at all
times. Then sin θ ̸= 0, and we can separate the third equation of (71):

1
sin θ

dθ = −
a2

2m
dt. (72)

Integrating, we have

− ln|csc(θ) + cot(θ)| = −
a2

2m
t + C0 (73)

or
csc(θ) + cot(θ) = C1ea2t/(2m). (74)

We get rid of the absolute value by choosing the sign for C1. Here, C1 > 0 since
θ(t2) > 0 implies csc(θ) + cot(θ) > 0. For any ϵ > 0, we can choose t3 such that
csc(ϵ) + cot(ϵ) = C1ea2t3/(2m). Then, for t > t3,

csc(θ(t)) + cot(θ(t)) = C1ea2t/(2m) > C1ea2t3/(2m)
= csc(ϵ) + cot(ϵ).

Thus, θ(t) < ϵ. □

With this, we have proved the stability of the solution for positive bare mass. In
the case where θ2 = 0, we see that θ(t) = 0 for t > t2. Recalling that q̇ = sin θ , we
have q̇(t)= 0 for t > t2. In the case where θ2 ̸= 0, we see that since limt→∞ θ(t)= 0
and q̇ = sin θ , we have limt→∞ q̇(t) = 0. In either case, the speed of the particle
goes to zero.

6. Proof of instability for negative bare mass

In the case of negative bare mass, we are concerned with (65) with m < 0. We will
show that a specific case of radiation leads to an unstable solution. Assume that the
radiation is purely incoming: F ≡ 0. Set Gβ(x) = β sin(πx)χ[−3,−1], where β ∈ R.
We can ignore the d equation and are left with a system of two equations:{

ḃ = sin θ − 1,

θ̇ =
a

2m
(Gβ(b)) cos2 θ −

a2

2m
sin θ,

(75)

{
b(0) = 0,

θ(0) = 0.
(76)

We will rewrite (75) by replacing m with −|m|:{
ḃ = sin θ − 1,

θ̇ = −
a

2|m|
Gβ(b) cos2 θ +

a2

2|m|
sin θ,

(77)
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b(0) = 0,

θ(0) = 0.
(78)

In addition, it will be useful to work with the reverse flow of the system:{
ḃ = − sin θ + 1,

θ̇ =
a cos2 θ

2|m|
(Gβ(b)) −

a2

2|m|
sin θ.

(79)

Note that β = 0 corresponds to the static solution. To see this, note that (77)
becomes {

ḃ = sin θ − 1,

θ̇ =
a2

2|m|
sin θ.

(80)

The solution to this with initial conditions given in (78) is{
b(t) = −t,
θ(t) = 0.

(81)

Since θ = 0 corresponds to q̇ = 0, (81) is the static solution.
To get a better sense of the system of ODEs in (77) for nonzero β, see Figure 4.

The interval [−3, −1] represents the particle becoming perturbed by the incoming
radiation. A particle with initial conditions given in (78) will end up with b = −1
and θ = 0. To see this, note that outside of [−3, −1], Gβ(b) = 0, and (77) reduces
to (80). Hence, in the interval [−1, 0], the solution to (77) with initial conditions
given in (78) is (81). At t1 = 1, b(t1) = −1 and θ(t1) = 0. At this point, we can
take the system of ODEs in (78) and modify the initial conditions as follows:{

b(t1) = −1,

θ(t1) = 0.
(82)

After entering the interval [−3, −1], Figure 4 suggests that the particle will
oscillate. The question is whether or not the particle will go back to rest (θ = 0 at
b = −3, represented by the gray line in Figure 4) or be left with some speed (θ ̸= 0
at b = −3). In the former case, the particle will remain at rest. In the latter case, the
particle will go toward θ = ±

π
2 . Recalling that q̇ = sin θ , this means q̇ = ±1. That

is, the particle will reach the speed of light in finite time. This is proved formally
in the next proposition.

Proposition 8. Suppose, for some t0 > 0, we have b(t0) = −3.

(i) If θ0 = θ(t0) = 0, then θ(t) = 0 for t > t0.

(ii) If π
2 > θ(t0) > 0, then θ(t1) =

π
2 for some t1 > t0.

(iii) If −
π
2 < θ(t0) < 0, then θ(t1) = −

π
2 for some t1 > t0.
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π
2

−
π
2

−3 −1

0
b

θ

Figure 4. Hypothetical solutions to the system of ODEs.

Proof. Because ḃ = sin θ − 1, it is always true that ḃ ≤ 0. Hence, for t > t0, we
have b < −3, and G(b) = 0. We can then rewrite the ODEs in (77) as (80). We
know θ(0) = 0 is a trivial solution and satisfies θ(t0) = 0. Since such a solution is
unique, (a) follows.

We will now show (b). Because θ(t0) > 0 and θ̇ > 0 if θ > 0, it follows that
θ(t1) > 0 for t1 > t0. Hence, sin θ ̸= 0, and we can separate the second equation
of (80):

1
sin θ

dθ =
a2

2|m|
dt. (83)

Integrating, we have

− ln|csc(θ) + cot(θ)| =
a2

2|m|
t + C0 (84)

or
csc(θ) + cot(θ) = C1e−a2t/(2|m|). (85)

We get rid of the absolute value by choosing the sign for C1. Here, C1 > 0
since θ(t0) > 0 implies csc(θ) + cot(θ) > 0. Now, for 0 ≤ θ ≤ π , we know
0 ≤ csc(θ) + cot(θ) < ∞ is monotonously decreasing and is invertible. Let 2 :

[0, π] → [0, ∞) be the inverse of csc(θ)+ cot(θ). We can now write the solution
explicitly as

θ(t) = 2(C1e−a2t/(2|m|)). (86)

The initial conditions tell us

C1 =
csc(θ(t0)) + cot(θ(t0))

e−a2t0/(2|m|)
=

C2

e−a2t0/(2|m|)
, (87)
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where C2 = csc(θ(t0)) + cot(θ(t0)). Because 0 ≤ θ(t0) < π
2 , we have C2 > 1.

Substituting C1 gives us

θ(t) = 2(C2e−a2(t−t0)/(2|m|)). (88)
Consider

t1 = −
2|m|

a2 ln
1

C2
+ t0 > t0.

Using the fact that 2(1) =
π
2 shows us that θ(t1) =

π
2 .

For part (c), repeat the proof for part (b), except C1 < 0, and we define 2 :

[−π, 0] −→ (−∞, 0] instead. □

We show instability by proving the existence of a solution to (77) which satisfies
the conditions of (c). To do this, we first work with the backward-flow defined in
(79) and make a change of variables.

Proposition 9. Assume G(x) = β sin(πx)χ[−3,−1]. There exists an ϵ > 0 such that
0 < β < ϵ implies that the system of ODEs in (77) with initial conditions at t1,{

b(t1) = −1,

θ(t1) = 0
(89)

has a unique solution (b(t), θ(t)) such that at some t2 > t1{
b(t2) = −3,

θ(t2) < 0.
(90)

Proof. To start, consider the backward flow (79) with initial conditions{
b(t1) = −3,

θ(t1) = 0
(91)

and make the change of variables{
y = θ,

x = b + 2.
(92)

Using the fact that
dy
dx

=
θ̇

ḃ
gives us the ODE{dyβ

dx
=

a
2|m|

(1 + sin yβ)(β sin(πx) − a sec yβ tan yβ),

yβ(−1) = 0.
(93)

By Lemma 10 below, there exists an ϵ > 0 such that 0 < β < ϵ implies yβ(1) > 0.
Because of the uniqueness of solutions for first-order ODEs, a β satisfying the pre-
vious statement implies that the solution for the forward-flow with initial conditions
specified in (89) ends up below 0. This can be intuitively seen in Figure 5. □
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−3 −1

θ

b
backward

forward

Figure 5. Relation between forward and backward solution.

Lemma 10. Assume that a > 0. Suppose yβ : R → R is a function satisfying{dyβ

dx
=

a
2|m|

(1 + sin yβ)(β sin(πx) − a sec yβ tan yβ),

yβ(−1) = 0.
(94)

There exists an ϵ > 0 such that 0 < β < ϵ implies yβ(1) > 0.

Proof. Consider y(x, β) = yβ(x) and let Z = ∂y/∂β. We can rewrite (94) as
∂y
∂x

=
a

2|m|
(1 + sin y)(β sin(πx) − a sec y tan y),

y(−1, β) = 0,

Z(−1, β) = 0.

(95)

Because y(1, 0) = 0, it suffices to show that Z(1, 0) = (∂y/∂β)(1, 0) > 0. Using

∂ Z
∂x

=
∂2 y

∂x∂β
=

∂2 y
∂β∂x

,

and substituting β = 0 (meaning y = 0), we arrive at the following linear differential
equation for Z : {

∂ Z
∂x

(x, 0) =
a

2|m|
sin(πx) −

a2

2|m|
Z ,

Z(−1, 0) = 0.

(96)

The solution to this is simply

Z(x, 0) =
a

2|m|
e−a2x/(2|m|)

∫ x

−1
sin(π t)ea2t/(2|m|) dt.

We have

Z(1, 0) =
a

2|m|
e−a2/(2|m|)

∫ 1

−1
sin(π t)ea2t/(2|m|) dt =

2πa|m|(1 − e−a2/|m|)

4π2m2 + a4 . (97)

Because a is assumed to be positive, we have Z(1, 0) > 0 as needed. □



ON THE JOINT EVOLUTION PROBLEM FOR A SCALAR FIELD 181

7. Summary and outlook

We have shown that the static solution to this problem, where the particle remains
at rest forever, is stable for particles with positive bare mass. However, for particles
with negative bare mass, the static solution is highly unstable. That is, a small amount
of radiation can cause the particle to accelerate to the speed of light in finite time.
Though this result is not intuitive, it is also not very surprising when considering
the model we used. In the initial conditions for the wave equation, we took

u(0, s) = −
a
2
|s| + V0(s). (98)

Recall that the field energy density is ϵ(t, s) = T field
00 =

1
2(u2

t + u2
s ). Therefore this

initial condition has an infinite amount of energy:
∫ ∞

−∞

ϵ(s, 0) ds =

∫ ∞

−∞

a2

4
+ V̇ 2

0 ds = ∞. (99)

Since the total energy of the system is conserved, there is an infinite amount of
energy available that can be transferred to the particle, allowing it to accelerate to
the speed of light. But another reason this can happen in finite time is that in this
model the Kiessling force f (t, q, q̇) itself diverges as |q̇| → 1.

Hence, looking forward, we would like to examine different models for the joint
evolution, in which such problems are not present. In one such model, the scalar field
would be governed by the Klein–Gordon equation rather than the wave equation:

∂2
t u − ∂2

s u + µ2u = aδ(s − q(t)),

u(0, s) =
a

2µ
e−µ|s|

+ v0(s),

∂t u(0, s) = v1(s).

(100)

This would add a mass term to the field equations and change the part of the initial
conditions that represents the static solution. In this model, the particle would
start with a finite amount of energy. It would be interesting to see if a particle
with negative bare mass still accelerates to the speed of light. We are currently
investigating this.

Another model to consider is one in which the field equations are fully relativistic.
The wave operator appearing in (2) is of course relativistic, but the delta source
on the right-hand side of the equation is not manifestly so. It turns out that it is
possible to modify this right-hand side so that the equation itself becomes fully
relativistic. It is possible to show that for this modified equation for a massless
scalar field, the Kiessling force will not diverge if the particle velocity reaches the
speed of light, and stability of the static solution is restored. This result will appear
elsewhere [Frolov et al. 2023].
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Additionally, we would like to explore what would happen with two particles
instead of one. Mathematically, this would involve the sum of two Dirac delta
functions as the source of the wave equation. This may necessitate the use of
differential-delay equations rather than simple ODEs, which would require much
more intricate analysis.
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