
inv lve
a journal of mathematics

msp

A local energy estimate for
2-dimensional Dirichlet wave equations

Kellan Hepditch and Jason Metcalfe

2023 vol. 16, no. 3



msp
INVOLVE 16:3 (2023)

https://doi.org/10.2140/involve.2023.16.483

A local energy estimate for
2-dimensional Dirichlet wave equations

Kellan Hepditch and Jason Metcalfe

(Communicated by Suzanne Lenhart)

We examine a variant of the integrated local energy estimate for (1+2)-dimensional
Dirichlet wave equations exterior to star-shaped obstacles. The classical bound
on the solution, rather than the derivative, is not typically available in two spatial
dimensions. Using an argument inspired by the r p-weighted method of Dafermos
and Rodnianski and taking advantage of the Dirichlet boundary conditions allow
for the recovery of such a term when the initial energy is appropriately weighted.

1. Introduction

We develop a variant of the integrated local energy estimate that holds for
2-dimensional wave equations exterior to star-shaped obstacles with Dirichlet
boundary conditions. Integrated local energy estimates first appeared in [Morawetz
1968] and are known to hold for wave equations with spatial dimension n ≥ 3.
The same are known to hold for Dirichlet wave equations exterior to star-shaped
obstacles as the boundary terms that arise upon integrating by parts have a favorable
sign. These, now standard, arguments are known to fail in two spatial dimensions.
We introduce a novel variant in two dimensions that recovers portions of the
integrated local energy bound.

For □ = ∂2
t − 1, where 1u = ∇ · ∇u =

∑n
i=1 ∂2

xi
u, we shall examine the

initial/boundary value problem
□u = 0, (t, x) ∈ R+ × Rn

\K,

u(t, x) = 0 for all x ∈ ∂K and t ≥ 0,

u(0, · ) = u0, ∂t u(0, · ) = u1.

(1-1)
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Here K ̸= ∅ is an open, bounded, star-shaped set with smooth boundary. By
translation symmetry, we may assume without loss of generality that 0 ∈K and that
K is star-shaped with respect to the origin. In this case, if n is the outward-pointing
normal to K at any point x ∈ ∂K, then

x · n ≥ 0. (1-2)

By scaling, we may assume without loss of generality that {|x| ≤ e2
} ⊂ K.

If we allow ∂u = (∂t u, ∇x u), the integrated local energy estimate, which is
known to hold for n ≥ 3, states that solutions to (1-1) satisfy∫

|∂u(T, x)|2 dx
+ R−1

∫ T

0

∫
|x|≤R

|∂u(t, x)|2 dx dt + R−3
∫ T

0

∫
|x|≤R

|u(t, x)|2 dx dt

≲
∫

|∂u(0, x)|2 dx. (1-3)

The implicit constant in the estimate is independent of the parameters R and T. The
first term on the left is the conserved energy for □. The latter two terms capture
the dispersive nature of the wave equation. The bound on these terms shows that
the local energy (i.e., that within the compact set {|x| ≤ R}), when appropriately
weighted to account for the size of the set, must decay sufficiently rapidly to be
globally integrable. In dimensions n ≥ 4, the last term on the left side may instead
be replaced by ∫ T

0

∫
Rn

1
|x|3

|u(t, x)|2 dx dt,

which is a slight improvement.
Integrated local energy estimates have a rich history. They originated in the study

of scattering theory. See, e.g., [Morawetz 1968]. They have subsequently, in, e.g.,
[Keel et al. 2002; Metcalfe and Sogge 2006], found applications in existence proofs
for nonlinear wave equations. This includes playing a major role in the study of
black hole stability [Dafermos et al. 2021; Klainerman and Szeftel 2023]. In the
asymptotically flat regime, other common measures of dispersion such as Strichartz
estimates [Hidano et al. 2010; Metcalfe and Tataru 2012] and pointwise decay
estimates [Tataru 2013; Metcalfe et al. 2012; Dafermos and Rodnianski 2010] are
known to be consequences of the integrated local energy estimate.

The estimate (1-3) is typically proved by pairing the equation □u = 0 with a
multiplier of the form

∂t u +
r

r +R
∂r u +

n−1
2

1
r +R

u,
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where R > 0, and integrating by parts. Here r = |x| and ∂r = (x/r) · ∇. See
[Sterbenz 2005] on R+ ×Rn and [Metcalfe and Sogge 2006] exterior to star-shaped
obstacles. See, e.g., [Metcalfe et al. 2020] for generalizations and a more complete
history.

In two spatial dimensions, the full boundaryless estimate (1-3) does not hold.
The third term on the left poses the difficulty. Indeed consider{

□u(t, x) = 0, (t, x) ∈ R+ × R2,

u(0, x) = β(|x|/ρ), ∂t u(0, x) = 0,

where β is a smooth, nonnegative cutoff function with β(r) ≡ 1 for r ≤ 1 and
β(r)≡ 0 for r ≥ 2. Due to the finite speed of propagation, u(t, x)≡ 1 for t +|x| ≤ρ.
If (1-3) held, then there would be a fixed constant C so that

π(ρ − 1) =

∫ ρ−1

0

∫
|x|≤1

|u(t, x)|2 dx dt ≤ C
1
ρ2

∫
|β ′(x/ρ)|2 dx = C̃,

where C̃ is independent of ρ. For ρ sufficiently large, this produces a contradiction.
Within the typical proof of (1-3), the third term corresponds to the

n−1
2

1
r +R

u

portion of the multiplier, which cancels out an unsigned occurrence of the La-
grangian that results from the other portion of the multiplier. The coefficient follows
from a lower bound on

−
n−1

4
1

( 1
r +R

)
.

In two dimensions, this quantity is not beneficially signed.
Portions of (1-3) may be recovered in two dimensions. The first term corresponds

to standard conservation of energy. And the bound for the second term roughly
corresponds to, e.g., [Smith and Sogge 2000, Lemma 2.2] or to the s =

1
2 boundary of

[Hidano et al. 2010, (3.6)]. The bound on the third term of (1-3) instead corresponds
to the s =

3
2 case of [loc. cit., (3.6)], which is out of reach when n = 2. The

boundaryless case is particularly difficult due to low-frequency contributions that
frequently require moment conditions to recover local energy decay. See, e.g.,
[Aikawa and Ikehata 2010; Ikehata 2023; Metcalfe and Tataru 2012; Vainberg 1975].

The main result of this paper is the following (1+2)-dimensional variant of the
local energy estimate. It recovers a bound on the lower-order term provided the
energy contributions are sufficiently weighted.

Theorem 1.1. Let 0 ∈ K ⊂ R2 be an open set with smooth boundary that is star-
shaped with respect to the origin. Assume that

{x ∈ R2
: |x| ≤ e2

} ⊆ K.
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Let u ∈ C2(R+ ×R2) be a solution to (1-1), and assume that for every T > 0 there is
a R > 0 so that u(t, x) = 0 for t ∈ [0, T ] and |x| ≥ R. Then provided that 0 ≤ p ≤ 1
and T > 0, we have∫

R2\K
r(lnr)p

{[(
∂t+∂r+

1
2r

)
u(T, x)

]2
+|̸∇u(T, x)|2+

(u(T, x))2

r2

}
dx

+

∫ T

0

∫
R2\K

(lnr)p
{[(∂t+∂r )u(t, x)]2

+|̸∇u(t, x)|2}dx dt

+

∫ T

0

∫
R2\K

p(1−p)

r2(lnr)2−p (u(t, x))2 dx dt

≲
∫

R2\K
r(lnr)p

{[(
∂t+∂r+

1
2r

)
u(0, x)

]2
+|̸∇u(0, x)|2+

(u(0, x))2

r2

}
dx. (1-4)

Here the angular derivatives ̸∇ are defined via the orthogonal decomposition

∇u =
x
r
∂r u + ̸∇u. (1-5)

The implicit constant here is independent of T. Recall that the assumptions that
0 ∈ K and {|x| ≤ e2

} ⊆ K can be made without loss of generality due to translation
and scaling invariance respectively. Moreover, when the data are compactly sup-
ported, the condition that u(t, x) vanishes for sufficiently large |x| is an immediate
consequence of the finite speed of propagation. And for more general data, one can
approximate by compactly supported data.

We note that (1-4) may be paired with the typical multiplier described above
to partially recover (1-3). In this case, however, portions of the data will instead
be measured in the weighted spaces that appear in the right side of (1-4). Perhaps
of more significant consequence in applications is the corresponding weights that
result on the forcing term when considering inhomogeneous equations.

The estimate (1-4) is most akin to the r p-weighted estimates of [Dafermos and
Rodnianski 2010] on R+ × R3. It is understood that the components of ∂u that are
tangent to the light cone decay more rapidly. In [loc. cit.], multipliers of the form
r p(∂t + ∂r + 1/r) with 0 < p < 2 were used and an improvement over (1-3) was
obtained for the good directions, though with a weighted initial energy. Our related
strategy will use multipliers like

r(ln r)p
(
∂t + ∂r +

1
2r

)
,

with 0 ≤ p ≤ 1. The bound that is obtained only holds for the good directions, but it
does yield control on the solution u itself in an appropriately weighted norm. With
the exception of p = 0, this method relies heavily upon being in an exterior domain
with Dirichlet boundary conditions.
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2. Proof of Theorem 1.1

For a function f (r) that will be fixed later, we consider

0 =

∫ T

0

∫
R2\K

□u(t, x) f (r)
(
∂t + ∂r +

1
2r

)
u(t, x) dx dt

=

∫ T

0

∫
R2\K

(∂2
t − ∇ · ∇)u(t, x) f (r)∂t u(t, x) dx dt

+

∫ T

0

∫
R2\K

(∂2
t − ∇ · ∇)u(t, x) f (r)∂r u(t, x) dx dt

+

∫ T

0

∫
R2\K

(∂2
t − ∇ · ∇)u(t, x) f (r)

1
2r

u(t, x) dx dt. (2-1)

We will now manipulate each of the three integrals on the right side.
For the first, we use the chain rule and the divergence theorem (along with the

Dirichlet boundary conditions) to compute∫ T

0

∫
R2\K

(∂2
t − ∇ · ∇)u(t, x) f (r)∂t u(t, x) dx dt

=
1
2

∫ T

0

∫
R2\K

f (r)∂t(∂t u(t, x))2 dx dt

+

∫ T

0

∫
R2\K

f ′(r)∂r u(t, x)∂t u(t, x) dx dt

+
1
2

∫ T

0

∫
R2\K

f (r)∂t |∇u(t, x)|2 dx dt. (2-2)

Here we note that as u(t, x)= 0 for all x ∈ ∂K and t ≥ 0, it follows that ∂t u(t, x)= 0
for all x ∈ ∂K and t ≥ 0. For later purposes we also note that

x ∈ ∂K =⇒ ∇u(t, x) = n(x) ∂nu(t, x),

where n(x) denotes the outward unit normal to K at the point x ∈ ∂K and ∂n is
the directional derivative in the direction n. Using that □u = 0 and applying the
fundamental theorem of calculus with (2-2) then give

1
2

∫
R2\K

f (r)(∂t u(T, x))2 dx +
1
2

∫
R2\K

f (r)|∇u(T, x)|2 dx

+

∫ T

0

∫
R2\K

f ′(r)∂r u(t, x)∂t u(t, x) dx dt

=
1
2

∫
R2\K

f (r)(∂t u(0, x))2 dx +
1
2

∫
R2\K

f (r)|∇u(0, x)|2 dx. (2-3)
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For the second integral on the right side of (2-1), integration by parts and the
divergence theorem show that∫ T

0

∫
R2\K

(∂2
t −∇·∇)u(t, x) f (r)∂r u(t, x)dx dt

=

∫
R2\K

f (r)∂t u(t, x)∂r u(t, x)dx
∣∣T
t=0

−
1
2

∫ T

0

∫
R2\K

f (r)∂r (∂t u(t, x))2 dx dt

+

∫ T

0

∫
∂K

( x
r
·n(x)

)
f (r)(∂nu(t, x))2 dσ(x)dt

+

∫ T

0

∫
R2\K

f ′(r)(∂r u(t, x))2 dx dt +
∫ T

0

∫
R2\K

f (r)∇u(t, x)·∇∂r u(t, x)dx dt.

Using that

∇∂r u(t, x) = ∂r∇u(t, x) +
1
r
̸∇u(t, x)

and the fact that the decomposition (1-5) is orthogonal, we then see that the right
side is equal to∫

R2\K
f (r)∂t u(t, x)∂r u(t, x)dx

∣∣T
t=0−

1
2

∫ T

0

∫
R2\K

f (r)∂r (∂t u(t, x))2 dx dt

+

∫ T

0

∫
∂K

( x
r
·n(x)

)
f (r)(∂nu(t, x))2 dσ(x)dt +

∫ T

0

∫
R2\K

f ′(r)(∂r u(t, x))2 dx dt

+

∫ T

0

∫
R2\K

f (r)

r
|̸∇u(t, x)|2 dx dt+1

2

∫ T

0

∫
R2\K

f (r)∂r |∇u(t, x)|2 dx dt.

The divergence theorem gives

−
1
2

∫ T

0

∫
R2\K

f (r)∂r ((∂t u(t, x))2
− |∇u(t, x)|2) dx dt

=
1
2

∫ T

0

∫
R2\K

∇ ·

( x
r

f (r)
)
((∂t u(t, x))2

− |∇u(t, x)|2) dx dt

−
1
2

∫ T

0

∫
∂K

( x
r

· n(x)
)

f (r)(∂nu(t, x))2 dσ(x) dt.

Since

∇ ·

( x
r

f (r)
)

= f ′(r) +
f (r)

r
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and since the orthogonality of (1-5) gives that |∇u|
2
= (∂r u)2

+ |̸∇u|
2, the assump-

tion that □u(t, x) = 0 then shows∫
R2\K

f (r)∂t u(T, x)∂r u(T, x) dx +
1
2

∫ T

0

∫
R2\K

f ′(r)(∂t u(t, x))2 dx dt

+
1
2

∫ T

0

∫
R2\K

f ′(r)(∂r u(t, x))2 dx dt+
∫ T

0

∫
R2\K

(
f (r)

r
−

1
2

f ′(r)

)
|̸∇u(t, x)|2 dx dt

+
1
2

∫ T

0

∫
R2\K

f (r)

r
((∂t u(t, x))2

− |∇u(t, x)|2) dx dt

+
1
2

∫ T

0

∫
∂K

( x
r

· n(x)
)

f (r)(∂nu(t, x))2 dσ(x) dt

=

∫
R2\K

f (r)∂t u(0, x)∂r u(0, x) dx. (2-4)

We finally consider the last integral in (2-1):

1
2

∫ T

0

∫
R2\K

(∂2
t − ∇ · ∇)u(t, x)

f (r)

r
u(t, x) dx dt

=
1
2

∫
R2\K

f (r)

r
u(t, x)∂t u(t, x) dx

∣∣∣T

t=0

−
1
2

∫ T

0

∫
R2\K

f (r)

r
((∂t u(t, x))2

− |∇u(t, x)|2) dx dt

+
1
4

∫ T

0

∫
R2\K

∇

(
f (r)

r

)
· ∇(u(t, x))2 dx dt.

Here we have again integrated by parts and used the divergence theorem along
with the Dirichlet boundary conditions. An additional application of the divergence
theorem then shows that

1
2

∫
R2\K

f (r)

r
u(T, x)∂t u(T, x) dx

−
1
2

∫ T

0

∫
R2\K

f (r)

r
((∂t u(t, x))2

− |∇u(t, x)|2) dx dt

−
1
4

∫ T

0

∫
R2\K

∇ ·∇

(
f (r)

r

)
(u(t, x))2 dx dt

=
1
2

∫
R2\K

f (r)

r
u(0, x)∂t u(0, x) dx. (2-5)

Provided that f (r) ≥ 0, by (1-2), the last term on the left side of (2-4) is
nonnegative. By adding (2-3), (2-4), and (2-5) and dropping the nonnegative
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boundary term in (2-4), we see that

1
2

∫
R2\K

f (r)[(∂t + ∂r )u(T, x)]2 dx +
1
2

∫
R2\K

f (r)|̸∇u(T, x)|2 dx

+
1
2

∫
R2\K

f (r)

r
u(T, x)∂t u(T, x) dx +

1
2

∫ T

0

∫
R2\K

f ′(r)[(∂t + ∂r )u(t, x)]2 dx dt

+

∫ T

0

∫
R2\K

(
f (r)

r
−

1
2

f ′(r)

)
|̸∇u(t, x)|2 dx dt

−
1
4

∫ T

0

∫
R2\K

1
( f (r)

r

)
(u(t, x))2 dx dt

≤
1
2

∫
R2\K

f (r)[(∂t + ∂r )u(0, x)]2 dx +
1
2

∫
R2\K

f (r)|̸∇u(0, x)|2 dx

+
1
2

∫
R2\K

f (r)

r
u(0, x)∂t u(0, x) dx. (2-6)

In order to get a meaningful estimate, we will need to show that the energy-type
contribution on the time slice t = T is nonnegative. To this end, we consider

1
2

∫
R2\K

f (r)[(∂t + ∂r )u(t, x)]2 dx +
1
2

∫
R2\K

f (r)

r
u(t, x)∂t u(t, x) dx

=
1
2

∫
R2\K

f (r)[(∂t + ∂r )u(t, x)]2 dx

+
1
2

∫
R2\K

f (r)

r
u(t, x)(∂t + ∂r )u(t, x) dx −

1
4

∫
R2\K

f (r)

r
∂r (u(t, x))2 dx.

The divergence theorem and the boundary conditions give that

−
1
4

∫
R2\K

f (r)

r
∂r (u(t, x))2 dx =

1
4

∫
R2\K

f ′(r)

r
(u(t, x))2 dx.

Hence, if we complete the square, we see that

1
2

∫
R2\K

f (r)[(∂t + ∂r )u(t, x)]2 dx +
1
2

∫
R2\K

f (r)

r
u(t, x)∂t u(t, x) dx

=
1
2

∫
R2\K

f (r)
[(

∂t + ∂r +
1
2r

)
u(t, x)

]2
dx

+
1
4

∫
R2\K

(
f ′(r)

r
−

f (r)

2r2

)
(u(t, x))2 dx. (2-7)
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Making this substitution in (2-6) gives

1
2

∫
R2\K

f (r)
[(

∂t+∂r+
1
2r

)
u(T, x)

]2
dx+

1
4

∫
R2\K

(
f ′(r)

r
−

f (r)

2r2

)
(u(T, x))2 dx

+
1
2

∫
R2\K

f (r)|̸∇u(T, x)|2 dx+
1
2

∫ T

0

∫
R2\K

f ′(r)[(∂t+∂r )u(t, x)]2 dx dt

+

∫ T

0

∫
R2\K

(
f (r)

r
−

1
2

f ′(r)

)
|̸∇u(t, x)|2 dx dt

−
1
4

∫ T

0

∫
R2\K

1

(
f (r)

r

)
(u(t, x))2 dx dt

≤
1
2

∫
R2\K

f (r)
[(

∂t+∂r+
1
2r

)
u(0, x)

]2
dx

+
1
4

∫
R2\K

(
f ′(r)

r
−

f (r)

2r2

)
(u(0, x))2 dx+

1
2

∫
R2\K

f (r)|̸∇u(0, x)|2 dx. (2-8)

We seek a function f ∈ C2(R+) so that the coefficient of each term in the left
side is nonnegative. To this end, for 0 ≤ p ≤ 1, we set

f (r) = r(ln r)p,

which is nonnegative on R2
\K as |x| ≥ 1 for all x ∈ R2

\K. Moreover,

f ′(r) = (ln r)p
+ p(ln r)p−1

≥ (ln r)p

and

2p + 1
2

(ln r)p
≥ f ′(r) −

1
2

f (r)

r
=

1
2
(ln r)p

+ p(ln r)p−1
≥

1
2
(ln r)p.

Since |x| ≥ e2 on R2
\K, we additionally have, for example,

f (r)

r
−

1
2

f ′(r) =
1
2
(ln r)p

−
p
2

(ln r)p−1

=
1
2
(ln r)p−1

(1
2

ln r +

[1
2

ln r − p
])

≥
1
4
(ln r)p provided that p ≤ 1.

And finally, we note that

−
1
4
1

(
f (r)

r

)
= −

1
4

r−1∂r

(
r∂r

(
f (r)

r

))
=

p(1 − p)

4
r−2(ln r)p−2,

which is nonnegative if 0 ≤ p ≤ 1. If we make these substitutions in (2-8), the main
result (1-4) follows immediately, which completes the proof.
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