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GLOBAL EXISTENCE FOR QUASILINEAR WAVE EQUATIONS

SATISFYING THE NULL CONDITION

MICHAEL FACCI AND JASON METCALFE

Communicated by Shiferaw Berhanu

Abstract. We explore the global existence of solutions to systems of quasi-

linear wave equations satisfying the null condition when the initial data are

sufficiently small. We adapt an approach of Keel, Smith, and Sogge, which

relies on integrated local energy estimates and a weighted Sobolev estimate

that yields decay in |x|, by using the rp-weighted local energy estimates of

Dafermos and Rodnianski. One advantage of this approach is that all time-

dependent vector fields can be avoided and the proof can be readily adapted

to address wave equations exterior to star-shaped obstacles.

1. Introduction

This article focuses on re-examining the proof of small data global existence

for systems of wave equations satisfying the classical null condition in (1 + 3)-

dimensions. The proof relies only on the translational and rotational symmetries

of the d’Alembertian. No explicit decay in time is required. Instead, in the

spirit of the almost global existence proofs of [5] and [14], a weighted Sobolev

estimate that provides decay in |x| is paired with a local energy estimate. In this

case, however, for the “good” derivatives that the null condition promises, we

use the rp-weighted local energy estimate of [2]. When considering quasilinear

equations one in essence has geometry that depends on the solution while the

solution in turn depends on the geometry. The highest order estimates need to

be adapted to this geometry. Upon performing the typical manipulations for
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the rp-weighted estimates, the possibility that the “good” derivative from the

multiplier and the “good” derivative from the null condition land on the same

factor is encountered. Our method introduces a simple approach to this issue,

which [7] calls “the problem of multiple good derivatives”, by allowing for different

choices of p in the rp-weighted estimate.

Specifically, we will consider

2uI = AI,αβJK ∂αu
J∂βu

K +BI,γαβJK ∂γu
J∂α∂βu

K ,

u(0, · ) = f, ∂tu(0, · ) = g.
(1.1)

Here (t, x) ∈ R+ × R3, I = 1, 2, . . . ,M , and u = (u1, . . . , uM ). Repeated Greek

indices are implicitly summed from 0 to 3 where ∂0 = ∂t, lower case Latin indices

are summed from 1 to 3, and repeated upper case indices are summed from 1 to

M . The coefficients of the quasilinear terms are assumed to satisfy the symmetries

(1.2) BI,γαβJK = BI,γβαJK = BK,γαβJI .

We have truncated (1.1) at the quadratic level. As is well-known, for problems

with small initial data, higher order terms are typically better behaved.

Even for small, sufficiently regular and decaying initial data, solutions to (1.1)

can only be ensured to exist almost globally, which means that the lifespan of the

solution grows exponentially as the size of the initial data shrinks. In [1] and [8],

the null condition was identified as a sufficient condition for guaranteeing global

solutions to (1.1) for small initial data. We assume the same here, which requires

that

(1.3) AI,αβJK ξαξβ = 0, and BI,γαβJK ξαξβξγ = 0, whenever ξ20 − ξ21 − ξ22 − ξ23 = 0.

These conditions promise that at least one factor of each nonlinear term is a

“good” derivative, which are directional derivatives in directions that are tangent

to the light cone t = |x| and are known to have more rapid decay. We will fix the

notation and more explicitly describe these in the next subsection.

The main result of this paper establishes global existence for (1.1) subject to

(1.3) for sufficiently small initial data.

Theorem 1.1. Fix 0 < p̃ < 2, and suppose f, g ∈ C∞(R3) satisfy

(1.4)
∑
|µ|≤N

(
‖〈r〉

p̃
2+|µ|∂µ∇f‖L2 + ‖〈r〉

p̃
2+|µ|∂µg‖L2 + ‖〈r〉

p̃−2
2 +|µ|

∂µf‖L2

)
≤ ε

for ε > 0 sufficiently small and N sufficiently large. Then provided that (1.2) and

(1.3) hold, (1.1) admits a global solution u ∈ C∞(R+ × R3).
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Here we have used 〈r〉 =
√

1 + r2. We note that the assumption (1.4) could be

refined after we introduce some additional notation.

A common approach in proofs of long-time existence for nonlinear wave equa-

tions is to rely on the method of invariant vector fields and the Klainerman-

Sobolev inequality [9]. Motivated by a desire to study similar wave equations in

exterior domains, with multiple speeds, and with nontrivial background geometry,

multiple approaches now exist that do not necessitate the use of the full set of

invariant vector fields. A sample of such results includes [16], [6], [15, 13], [11, 12],

[10].

The majority of the above results still rely on the scaling vector field t∂t+ r∂r.

Works such as [4], [7], [18] have pioneered methods for quasilinear equations

that do not rely on any time dependent vector field. These methods rely on

other means of obtaining t-decay. In the case of, e.g., [7] this is accomplished by

considering a null foliation.

In the current paper, we explore a technique that is more akin to [5], [14].

Rather than relying on decay in t, this approach couples decay in |x| with local

energy estimates for the wave equation in order to obtain almost global existence

without assuming special structures on the nonlinearity. In order to take advan-

tage of the good derivatives that the null condition ensures, we will employ the

rp-weighted local energy estimate of [2]. We note that our method can immedi-

ately be adapted to prove the same result for Dirichlet-wave equations exterior

to star-shaped obstacles.

In [3], this same approach was explored for semilinear wave equations. The

current result is a bit more involved. In order to avoid a loss of regularity at the

highest order, the estimates need to be adapted to allow for small, time-dependent

perturbations of 2. Upon doing so, “the problem of multiple good derivatives”

as described in [7, Section 1.5.4] is encountered. In a typical term encountered

within the rp-weighted local energy estimate, there is a cubic interaction. Two fac-

tors arise from the quadratic nonlinearity and one from the multiplier. Amongst

these factors, the multiplier contributes a good derivative and the null condition

promises at least one additional good derivative. If these good derivatives fall on

different factors, the method of [3] applies easily. When adapting the estimates

to allow for the perturbations, the manipulations allow for these good derivatives

to both fall on the same factor. We propose an alternative to the methods of [7]

for subverting this problem. In particular, we consider separately a lower order

energy and a high order energy, which on its surface is commonplace. When doing

so, however, we consider different choices of p in the rp-weighted estimates, and
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this will allow us to avoid the use of time dependent vector fields to obtain the

additional decay needed for these terms.

1.1. Notation. Here fix the notation that will be used throughout the paper.

We let u′ = ∂u = (∂tu,∇xu) denote the space-time gradient. The notation

Ω = (x2∂3 − x3∂2, x3∂1 − x1∂3, x1∂2 − x2∂1)

is used for the generators of rotations. And

Z = (∂0, ∂1, ∂2, ∂3,Ω1,Ω2,Ω3)

will denote our collections of admissible vector fields. We will use the shorthand

|Z≤Nu| =
∑
|µ|≤N

|Zµu|, |∂≤Nu| =
∑
|µ|≤N

|∂µu|.

The (spatial) gradient will be frequently (orthogonally) decomposed into its

radial and angular parts:

∇x =
x

r
∂r + 6∇.

Here, as is standard, r = |x| and ∂r = x
r · ∇x. The components of ∂u that are

tangent to the light cone are known to have better decay properties. We will

abbreviate these “good” derivatives as

6∂ = (∂t + ∂r, 6∇).

A key property of the admissible vector fields is that they satisfy:

[2, Z] = 0.

We also need to understand how they interact with ∂ and 6∂. In particular, we

have

(1.5) |[Z, ∂]u| ≤ |∂u|, |[Z, 6∂]u| ≤ 1

r
|Zu|, |[∂, 6∂]u| ≤ 1

r
|∂u|.

In the second computation, we use the fact that |6∇u| ≤ 1
r |Zu|, which follows from

6∇ = − x
r2 × Ω.

2. Local Energy Estimates

In order to handle the quasilinear nature of the problem, we will rely on linear

estimates for the wave equation on geometries that are a small, though time-

dependent, perturbation of Minkowski space. In particular, we consider solutions

to

(2hu)I = F I ,

u(0, · ) = f, ∂tu(0, · ) = g
(2.1)
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where

(2hu)I = (∂2t −∆)uI + hI,αβK ∂α∂βu
K

and the perturbations are assumed to satisfy

(2.2) hI,αβK = hK,αβI = hI,βαK .

For a differential operator D, we use the following notation

|Dh| =
M∑

I,K=1

3∑
α,β=0

|DhI,αβK (t, x)|, |D(hαβωαωβ)| =
M∑

I,K=1

|D(hI,αβK (t, x)ωαωβ)|.

In [15], the integrated local energy estimate was established for 2h and used to

prove global existence for systems of wave equations satisfying the null condition

in exterior domains. We will utilize the notation

‖u‖LE = sup
R≥1

R−1/2‖u‖L2
tL

2
x([0,∞)×{R

2 ≤〈x〉≤R})
, ‖u‖LE1 = ‖(∂u, u/r)‖LE

and record the following immediate corollary of [15, Proposition 2.2].

Proposition 2.1. Suppose that h satisfies (2.2) and

(2.3) |h| =
M∑

I,K=1

3∑
α,β=0

|hI,αβK (t, x)| ≤ δ � 1

with δ > 0 sufficiently small. Then if u ∈ C∞ solves (2.1) and for every t,

|∂≤1u(t, x)| → 0 as |x| → ∞, then

(2.4) ‖u‖2LE1 + ‖∂u‖2L∞t L2
x
. ‖∂u(0, · )‖2L2 +

∫ ∞
0

∫ (
|∂u|+ |u|

〈r〉

)
|2hu| dx dt

+

∫ ∞
0

∫ ∣∣∣∂αhI,αβK ∂βu
K
∣∣∣(|∂uI |+ |uI |

r

)
dx dt+

∫ ∞
0

∫ ∣∣∣(∂hI,αβK )∂βu
K∂αu

I
∣∣∣ dx dt

+

∫ ∞
0

∫
|h|
〈r〉
|∂u|

(
|∂u|+ |u|

r

)
dx dt.

The spatial portion of the LE1 norm considers the local energy of u in an

inhomogeneous annulus with a weight that is dictated by the radii of the annulus.

The estimate captures the fact that this local energy decays at a sufficiently rapid

rate to permit L2-integrability in time with a bound that (essentially) matches

that provided by the energy estimate (for perturbations of 2).

The proof of this proposition follows upon pairing (2hu)I with a multiplier of

the form

C∂tu
I +

r

r +R
∂ru

I +
1

r +R
uI ,
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integrating over [0, T ]× R3, and integrating by parts. See also [17] and [14].

If we set ω = (−1, x/r), in order to take advantage of the null condition in the

sequel, we note

∂αh
I,αβ
K ∂βu

K =(∂α − ωα∂r)hI,αβK ∂βu
K + ωα∂rh

I,αβ
K (∂β − ωβ∂r)uK

+ ∂r(ωαωβh
I,αβ
K )∂ru

K ,
(2.5)

and

∂hI,αβK ∂βu
K∂αu

I =∂hI,αβK (∂β − ωβ∂r)uK∂αuI + ∂hI,αβωβ∂ru
K(∂α − ωα∂r)uI

+ (ωαωβ∂h
I,αβ)∂ru

K∂ru
I .

(2.6)

Using these, we observe that (2.4) implies that

(2.7) ‖u‖2LE1 + ‖∂u‖2L∞t L2
x
. ‖∂u(0, · )‖2L2 +

∫ ∞
0

∫ (
|∂u|+ |u|

〈r〉

)
|2hu| dx dt

+

∫ ∞
0

∫
|∂h||6∂u|

(
|∂u|+ |u|

r

)
dx dt

+

∫ ∞
0

∫ ( |h|
〈r〉

+ |6∂h|+ |∂(ωαωβh
αβ)|

)
|∂u|

(
|∂u|+ |u|

r

)
dx dt.

We next consider a variant of the rp-weighted local energy estimate of [2].

To, e.g., readily control commutators involving vector fields and 6∂, the following

estimate that is akin to a Hardy inequality is convenient.

Lemma 2.2. Suppose that u ∈ C1([0,∞) × R3) and that for each t ∈ [0,∞),

rp/2|u(t, x)| → 0 as |x| → ∞. Then, provided 0 < p < 2,

(2.8) ‖r
p−2
2 u‖L∞t L2

x
+ ‖r

p−3
2 u‖L2

tL
2
x
. ‖r

p−2
2 u(0, · )‖L2 + ‖r

p−3
2 6∂(ru)‖L2

tL
2
x
.

Proof. We consider∫ T

0

∫
rp−3u2 dx dt =

1

p− 2

∫ T

0

∫
S2

∫ ∞
0

(∂t + ∂r)(r
p−2)(ru)2 dr dσ dt.

Upon integrating by parts, this is

=
1

p− 2

∫
rp−2u2(T, x) dx− 1

p− 2

∫
rp−2u2(0, x) dx

+
2

2− p

∫ T

0

∫
S2

∫ ∞
0

rp−2(ru)(∂t + ∂r)(ru) dr dσ dt.
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If we apply the Schwarz inequality to the last term, the above two equations yield
(where the norms in time are taken over [0, T ])

‖r
p−3
2 u‖2

L2
tL

2
x

+‖r
p−2
2 u(T, · )‖2

L2
x
. ‖r

p−2
2 u(0, · )‖2

L2
x

+‖r
p−3
2 u‖L2

tL
2
x
‖r

p−3
2 (∂t+∂r)(ru)‖L2

tL
2
x
.

Using that ab ≤ ca2 + 1
4cb

2 for any c > 0, the first factor of the last term can be

absorbed into the left side. The proof is then completed by taking a supremum

over T . �

The next result is the main linear estimate used in our proof of global existence.

It is based on the rp-weighted local energy estimates of [2]. Here we have adapted

the proof to allow for small, time-dependent perturbations of the geometry in

order to accommodate the quasilinear nature of the problem. Due to the “problem

of multiple good derivatives,” we do so in two different ways. The first estimate,

which will be applied with the highest order of vector fields, uses integration by

parts on the perturbation in the most standard way. Upon doing so, it is possible

that both good derivatives will land on the perturbation. To handle this, the

second estimate, which will be used at a lower order and with a higher p, will

be employed. In this second case, if neither of the derivatives in the quasilinear

term are good derivatives, no further integration by parts will be applied. This

will keep the two good derivatives on separate terms, which will each be at this

lower order.

Theorem 2.3. Suppose h ∈ C2([0,∞)×R3) satisfies (2.2). Let u ∈ C2([0,∞)×
R3) be so that for each t ≥ 0,

r
p+2
2 |∂≤1u(t, x)| → 0 as |x| → ∞.

Then, for any 0 < p < 2,

‖r
p−1
2 6∂u‖2L2

tL
2
x

+ ‖r
p−3
2 u‖2L2

tL
2
x

+ ‖r
p
2 6∂u‖2L∞t L2

x
+ ‖r

p−2
2 u‖2L∞t L2

x

(2.9)

. ‖r
p
2 6∂u(0, · )‖2L2

x
+ ‖r

p−2
2 u(0, · )‖2L2

x

+ sup
t

(∫
rp|h||∂u|

(
|∂u|+ r−1|u|

)
dx
)

+

∫ ∞
0

∫
rp|2hu|

(
|6∂u|+ |u|

r

)
dx dt+

∫ ∞
0

∫
rp|∂h||6∂u|

(
|6∂u|+ |u|

r

)
dx dt

+

∫ ∞
0

∫
rp
( |h|
r

+ |6∂h|+ |∂(ωαωβh
αβ)|

)
|∂u|

(
|∂u|+ |u|

r

)
dx dt,
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and

‖r
p−1
2 6∂u‖2L2

tL
2
x

+ ‖r
p−3
2 u‖2L2

tL
2
x

+ ‖r
p
2 6∂u‖2L∞t L2

x
+ ‖r

p−2
2 u‖2L∞t L2

x

(2.10)

. ‖r
p
2 6∂u(0, · )‖2L2

x
+ ‖r

p−2
2 u(0, · )‖2L2

x

+ sup
t

(∫
rp|h|

(
|∂u|+ |u|

r

)(
|6∂u|+ |u|

r

)
dx
)

+

∫ ∞
0

∫
rp|2hu|

(
|6∂u|+ |u|

r

)
dx dt

+

∫ ∞
0

∫
rp−1|h||∂u|

(
|6∂u|+ |u|

r

)
dx dt+

∫ ∞
0

∫
rp|∂h||6∂u|

(
|6∂u|+ |u|

r

)
dx dt

+

∫ ∞
0

∫
rp
(
|6∂h|+ |hαβωαωβ |

)
|∂∂≤1u|

(
|6∂u|+ |u|

r

)
dx dt

+

∫ ∞
0

∫
rp−3

(
r|∂h|+ |h|

)
|u|2.

The reader should have in mind that in the sequel we will choose the perturba-

tion to have the form hI,αβK = −BI,γαβJK ∂γu
J . We note that the last term in (2.9)

could potentially have multiple good derivatives when the perturbation h is itself

based in a good derivative. As indicated above, to remedy this, we will later use

(2.10) with its p chosen to be more than twice that used in (2.9). We also point

out that the second to last term of (2.10) has a factor containing more derivatives

than what appear in the left, which requires that this estimate be applied with a

lower number of vector fields so this loss of regularity can be overcome.

Proof. We consider ∫ T

0

∫
rp2hu

I
(
∂t + ∂r +

1

r

)
uI dx dt.

To start, we argue as in [3] and note that∫ T

0

∫
rp2uI

(
∂t + ∂r +

1

r

)
uI dx dt

=

∫ T

0

∫
rp
[(
∂t − ∂r

)(
∂t + ∂r

)
(ruI)− 6∇ · 6∇(ruI)

](
∂t + ∂r

)
(ruI) dr dσ dt.

Integrating by parts and using [∇, ∂r] = 1
r 6∇, we see that the right side is

=
1

2

∫ T

0

∫
rp
(
∂t − ∂r

)∣∣∣(∂t + ∂r

)
(ru)

∣∣∣2 dr dσ dt
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+
1

2

∫ T

0

∫
rp
(
∂t + ∂r

)
|6∇(ru)|2 dr dσ dt

+

∫ T

0

∫
rp−1|6∇(ru)|2 dr dσ dt.

Subsequent integrations by parts give that this is

=
1

2
‖r

p−2
2 6∂(ru)(T, · )‖2L2 −

1

2
‖r

p−2
2 6∂(ru)(0, · )‖2L2

+
p

2

∫ T

0

∫
rp−1

∣∣∣(∂t + ∂r

)
(ru)

∣∣∣2 dr dσ dt
+
(

1− p

2

)∫ T

0

∫
rp−1|6∇(ru)|2 dr dσ dt.

Provided that 0 < p < 2, we can combine this with (2.8) to obtain

(2.11) ‖r
p−1
2 6∂u‖2L2

tL
2
x
+ ‖r

p−3
2 u‖2L2

tL
2
x
+ ‖r

p
2 6∂u(T, · )‖2L2

x
+ ‖r

p−2
2 u(T, · )‖2L2

x

. ‖r
p
2 6∂u(0, · )‖2L2

x
+ ‖r

p−2
2 u(0, · )‖2L2

x
+
∣∣∣∫ T

0

∫
rp2uI

(
∂t + ∂r +

1

r

)
uI dx dt

∣∣∣.
We now consider the perturbation terms. Using, again, that [∇, ∂r] = 1

r 6∇ and

the symmetries (2.2), we obtain∫ T

0

∫
rphI,αβK ∂α∂βu

K
(
∂t + ∂r +

1

r

)
uI dx dt

=

∫
rphI,0βK ∂βu

K
(
∂t + ∂r +

1

r

)
uI dx

∣∣∣T
t=0

−
∫ T

0

∫
rp−1hI,jβK ∂βu

K 6∇juI dx dt

+

∫ T

0

∫
rp−2ωjh

I,jβ
K ∂βu

KuI dx dt

− 1

2

∫ T

0

∫
rphI,αβK

(
∂t + ∂r +

1

r

)[
∂βu

K∂αu
I
]
dx dt

−
∫ T

0

∫
rp∂αh

I,αβ
K ∂βu

K
(
∂t + ∂r +

1

r

)
uI dx dt

− p
∫ T

0

∫
rp−1ωjh

I,jβ
K ∂βu

K
(
∂t + ∂r +

1

r

)
uI dx dt,
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where, as above, we have set ω = (−1, x/r). And thus, arguing as in (2.5) and

(2.6) and integrating by parts, this is

=

∫
rphI,0βK ∂βu

K
(
∂t + ∂r +

1

r

)
uI dx

∣∣∣T
t=0
−1

2

∫
rphI,αβK ∂βu

K∂αu
I dx

∣∣∣T
t=0

−
∫ T

0

∫
rp−1hI,jβK ∂βu

K 6∇juI dx dt+

∫ T

0

∫
rp−2hI,jβK uI∂βu

K dx dt

+
p+ 1

2

∫ T

0

∫
rp−1hI,αβK ∂βu

K∂αu
I dx dt

+
1

2

∫ T

0

∫
rp
(
∂t + ∂r

)
hI,αβK ∂βu

K∂αu
I dx dt

−
∫ T

0

∫
rp∂αh

I,αβ
K (∂β − ωβ∂r)uK

(
∂t + ∂r +

1

r

)
uI dx dt

−
∫ T

0

∫
rpωβ

(
∂α − ωα∂r

)
hI,αβK ∂ru

K
(
∂t + ∂r +

1

r

)
uI dx dt

−
∫ T

0

∫
rpωβωα∂rh

I,αβ
K ∂ru

K
(
∂t + ∂r +

1

r

)
uI dx dt

− p
∫ T

0

∫
rp−1ωjh

I,jβ
K ∂βu

K
(
∂t + ∂r +

1

r

)
uI dx dt.

From this, when combined with (2.11), the bound (2.9) follows immediately.

We next consider (2.10). We write

hI,αβK ∂α∂βu
K =hI,αβK ωαωβ∂

2
ru

K + hI,αβK ∂α

(
∂β − ωβ∂r

)
uK

+ hI,αβK

(
∂α − ωα∂r

)
ωβ∂ru

K .

For (2.10), we need not further modify the terms involving hI,αβK ωαωβ∂
2
ru

K . For

those that remain, we notice that∫ T

0

∫
rphI,αβK

(
∂α∂β − ωαωβ∂2r

)
uK
(
∂t + ∂r +

1

r

)
uI dx dt

=

∫
rphI,0βK ∂βu

K
(
∂t + ∂r +

1

r

)
uI dx

∣∣∣T
t=0

− p
∫ T

0

∫
rp−1ωjh

I,jβ,
K ∂βu

K
(
∂t + ∂r +

1

r

)
uI dx dt

−
∫ T

0

∫
rp∂αh

I,αβ
K

(
∂β − ωβ∂r

)
uK
(
∂t + ∂r +

1

r

)
uI dx dt
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−
∫ T

0

∫
rp(∂α − ωα∂r)hI,αβK ωβ∂ru

K
(
∂t + ∂r +

1

r

)
uI dx dt

+ (p+ 2)

∫ T

0

∫
rp−1hI,αβK ωαωβ∂ru

K
(
∂t + ∂r +

1

r

)
uI dx dt

−
∫ T

0

∫
rp−1hI,jβK ∂βu

K 6∇juI dx dt+

∫ T

0

∫
rp−2hI,jβK ωju

I∂βu
K dx dt

−
∫ T

0

∫
rp−2hI,αβK ωαωβu

I∂ru
K dx dt

− 1

2

∫ T

0

∫
rphI,αβK

(
∂t + ∂r +

1

r

)[
(∂β − ωβ∂r)uK∂αuI

+ ωβ∂ru
K(∂α − ωα∂r)uI

]
dx dt.

A subsequent integration by parts gives that

− 1

2

∫ T

0

∫
rphI,αβK

(
∂t + ∂r +

1

r

)[
(∂β − β∂r)uK∂αuI

+ ωβ∂ru
K(∂α − ωα∂r)uI

]
dx dt

= −1

2

∫
rphI,αβK

[
(∂β − ωβ∂r)uK∂αuI

+ ωβ∂ru
K(∂α − ωα∂r)uI

]
dx
∣∣∣T
0

+
1

2

∫ T

0

∫
rp(∂t + ∂r)h

I,αβ
K

[
(∂β − ωβ∂r)uK∂αuI

+ ωβ∂ru
K(∂α − ωα∂r)uI

]
dx dt

+
p+ 1

2

∫ T

0

∫
rp−1hI,αβK

[
(∂β − ωβ∂r)uK∂αuI

+ ωβ∂ru
K(∂α − ωα∂r)uI

]
dx dt.

Moreover,∫ T

0

∫
rp−2hI,jβK ωju

I∂βu
K dx dt−

∫ T

0

∫
rp−2hI,αβK ωαωβu

I∂ru
K dx dt

=
1

2

∫
rp−2hI,j0K uKuI dx

∣∣∣T
0

− p− 1

2

∫ T

0

∫
rp−3ωjωlh

I,jl
K uKuI dx dt− 1

2

∫ T

0

∫
rp−3hI,jjK uKuI dx dt
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− 1

2

∫ T

0

∫
rp−2ωj∂βh

I,jβ
K uKuI dx dt+

p

2

∫ T

0

∫
rp−3hI,αβK ωαωβu

KuI dx dt

+
1

2

∫ T

0

∫
rp−2∂rh

I,αβ
K ωαωβu

KuI dx dt.

Combining (2.11) with the preceding three equations yields (2.10). �

The main source of decay that we rely upon is the following weighted Sobolev

estimate that originates from [8]. It is proved by localizing and applying standard

Sobolev embeddings in the r, ω variables. The decay results upon adjusting the

volume element dr dσ(ω) to match that of R3 in spherical coordinates.

Lemma 2.4. For h ∈ C∞(R3) and R ≥ 1, we have

(2.12) ‖h‖L∞(R/2<|x|<R) . R
−1‖Z≤2h‖L2(R/4<|x|<2R).

We now use the smallness of h to absorb some perturbative terms and first

undertake (2.9). The following proposition largely addresses the problem of mul-

tiple good derivatives. In the sequel, the perturbation will be a lower order term.

When this lower order term is small in a weighted space with the p̃ more than

twice the choice of p for the higher order factors, we are able to absorb the pertur-

bative factors, including the last term in (2.9), which is the possible occurrence

of multiple good derivatives. The resulting estimate is then quite similar to that

used in [3] for the semilinear case. The issue with multiple good derivatives barely

appears in the next section as it is entirely reduced to demonstrating hypothesis

(2.13) below.

Proposition 2.5. Fix 0 < p < 1. Assume that h ∈ C2([0,∞) × R3) satisfies

(2.2). Moreover, for p̃ > 2p, suppose

(2.13) ‖Z≤3h‖L∞t L2
x

+ ‖〈r〉
p̃−1
2 Z≤2 6∂h‖L2

tL
2
x

+ ‖〈r〉
p̃−1
2 Z≤3(ωαωβh

αβ)‖L2
tL

2
x
≤ δ

for δ > 0 sufficiently small. Let u ∈ C2([0,∞)× R3) be so that for each t ≥ 0,

r
p+2
2 |∂≤1Z≤Nu(t, x)| → 0, as |x| → ∞.

Then

(2.14) ‖〈r〉
p
2 6∂Z≤Nu‖L∞t L2

x
+ ‖〈r〉

p−2
2 Z≤Nu‖L∞t L2

x
+ ‖∂Z≤Nu‖L∞t L2

x

+ ‖〈r〉
p−1
2 6∂Z≤Nu‖L2

tL
2
x

+ ‖〈r〉
p−3
2 Z≤Nu‖L2

tL
2
x

+ ‖Z≤Nu‖LE1

. ‖〈r〉
p
2 6∂Z≤Nu(0, · )‖L2

x
+ ‖〈r〉

p−2
2 Z≤Nu(0, · )‖L2

x

+ ‖∂Z≤Nu(0, · )‖L2
x

+ ‖〈r〉
p+1
2 2hZ

≤Nu‖L2
tL

2
x
.
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Proof. We first apply (2.9) to χ>1(|x|)Z≤Nu where χ>1(r) is a smooth function

that vanishes for r ≤ 1 and is identically 1 for r > 2. Using a Sobolev embedding,

H2(R3) ⊆ L∞(R3), and the bound for the first term in (2.13), it follows that∫ ∞
0

∫
rp|[2h, χ>1]Z≤Nu||6∂(χ>1Z

≤Nu)| dx dt

. (1 + ‖∂≤1h‖L∞t L∞x
)‖Z≤Nu‖2LE1 . ‖Z≤Nu‖2LE1 .

Thus by subsequently applying (2.7) to Z≤Nu, we see that the square of the left

side of (2.14) is bounded by

(2.15) ‖〈r〉
p
2 6∂Z≤Nu(0, · )‖2L2

x
+ ‖〈r〉

p−2
2 Z≤Nu(0, · )‖2L2

x
+ ‖∂Z≤Nu(0, · )‖2L2

x

+ sup
t

∫
〈r〉p|h|

(
|∂Z≤Nu|+ |Z

≤Nu|
〈r〉

)2
dx

+

∫ ∞
0

∫ (
〈r〉p|6∂Z≤Nu|+ |∂Z≤Nu|+ 〈r〉p−1|Z≤Nu|

)
|2hZ≤Nu| dx dt

+

∫ ∞
0

∫
〈r〉p|∂h|

(
|6∂Z≤Nu|+ |Z

≤Nu|
〈r〉

)2
dx dt

+

∫ ∞
0

∫
|∂h||6∂Z≤Nu|

(
|∂Z≤Nu|+ |Z

≤Nu|
r

)
dx dt

+

∫ ∞
0

∫
〈r〉p

( |h|
〈r〉

+ |6∂h|+ |∂(ωαωβh
αβ)|

)(
|∂Z≤Nu|+ |Z

≤Nu|
r

)2
dx dt.

By the Cauchy-Schwarz inequality and the fact that p > 0, we obtain∫ ∞
0

∫ (
〈r〉p|6∂Z≤Nu|+ |∂Z≤Nu|+ 〈r〉p−1|Z≤Nu|

)
|2hZ≤Nu| dx dt

≤ 1

2

(
‖〈r〉

p−1
2 6∂Z≤Nu‖2L2

tL
2
x

+ ‖Z≤Nu‖2LE1 + ‖〈r〉
p−3
2 Z≤Nu‖2L2

tL
2
x

)
+ C‖〈r〉

p+1
2 2hZ

≤Nu‖2L2
tL

2
x
.

The first three terms in the right side can be absorbed by the square of the left

side of (2.14).

We will proceed to showing that the fourth, sixth, seventh, and eighth terms of

(2.15) can be bounded by a constant that can be chosen sufficiently small times

the square of the left side of (2.14). These terms can again be absorbed, which

will complete the argument.

Since p < 1, using (2.12), a standard Hardy inequality

(2.16) ‖r−1u‖L2(R3) . ‖∇u‖L2(R3),
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and (2.13) results in

sup
t

∫
〈r〉p|h|

(
|∂Z≤Nu|+ |Z

≤Nu|
〈r〉

)2
dx . δ‖∂Z≤Nu‖2L∞t L2

x
,

which suffices for the fourth term in (2.15).

Proceeding to the sixth term in (2.15), we apply (2.12) and (2.13) to get∫ ∞
0

∫
〈r〉p|∂h|

(
|6∂Z≤Nu|+ |Z

≤Nu|
〈r〉

)2
dx dt

. δ
(
‖〈r〉

p−1
2 6∂Z≤Nu‖2L2

tL
2
x

+ ‖〈r〉
p−3
2 Z≤Nu‖2L2

tL
2
x

)
.

Similarly, since p > 0,∫ ∞
0

∫
|∂h||6∂Z≤Nu|

(
|∂Z≤Nu|+ |Z

≤Nu|
r

)
dx dt

. δ‖〈r〉
p−1
2 6∂Z≤Nu‖L2

tL
2
x
‖Z≤Nu‖LE1 .

And since p < 1, (2.12) and (2.13) give∫ ∞
0

∫
〈r〉p−1|h|

(
|∂Z≤Nu|+ |Z

≤Nu|
〈r〉

)2
dx dt . δ‖Z≤Nu‖2LE1 .

It remains to establish∫ ∞
0

∫
〈r〉p

(
|6∂h|+ |∂(ωαωβh

αβ)|
)(
|∂Z≤Nu|+ |Z

≤Nu|
r

)2
dx dt(2.17)

. δ‖∂Z≤Nu‖L∞t L2
x
‖Z≤Nu‖LE1 .

The left side of (2.17) is bounded by∑
j≥0

2pj
∫ ∞
0

∫
{2j−1≤〈x〉≤2j}

(
|6∂h|+ |∂(ωαωβh

αβ)|
)(
|∂Z≤Nu|+ |Z

≤Nu|
r

)2
dx dt.

Applying (2.12), the Schwarz inequality, and the Hardy inequality (2.16), this is

controlled by(∑
j≥0

2j(p−
p̃
2 )
)(
‖〈r〉

p̃−1
2 Z≤2 6∂h‖L2

tL
2
x

+ ‖〈r〉
p̃−1
2 Z≤2∂(ωαωβh

αβ)‖L2
tL

2
x

)
· ‖∂Z≤Nu‖L∞t L2

x
‖Z≤Nu‖LE1 .

Using the bound on the last two terms of (2.13), as p̃ > 2p, (2.17) follows. �

We next consider a result analogous to Proposition 2.5 for the lower order

energy, which has the larger weight p̃. The proof proceeds similarly but is based

instead on (2.10). It is this estimate that will allow us to show (2.13) in the
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sequel, which thus addresses the issue with multiple good derivatives. We note

that the following will be applied at a lower order than (2.14), and as such, we

will be able to handle the loss of a vector field that occurs in the last two terms

of the estimate.

Proposition 2.6. Fix 0 < p < 1. Assume that h ∈ C2([0,∞)×R3) satisfies (2.2)

and, for 2p < p̃ < 2, (2.13) with δ > 0 sufficiently small. Let u ∈ C2([0,∞)×R3)

be so that for each t ≥ 0,

r
p+2
2 |∂≤1Z≤Nu(t, x)| → 0, as |x| → ∞.

Then

(2.18) ‖〈r〉
p̃
2 6∂Z≤N−1u‖L∞t L2

x
+ ‖〈r〉

p̃−2
2 Z≤N−1u‖L∞t L2

x

+ ‖〈r〉
p̃−1
2 6∂Z≤N−1u‖L2

tL
2
x

+ ‖〈r〉
p̃−3
2 Z≤N−1u‖L2

tL
2
x

. ‖〈r〉
p̃
2 6∂Z≤N−1u(0, · )‖L2

x
+ ‖〈r〉

p̃−2
2 Z≤N−1u(0, · )‖L2

x

+ ‖〈r〉
p̃+1
2 2hZ

≤N−1u‖L2
tL

2
x

+ ‖Z≤Nu‖LE1 + ‖∂Z≤Nu‖L∞t L2
x
.

Proof. As in the preceding proof, (2.10) can be applied to control the square of
the left side of (2.18) by

‖〈r〉
p̃
2 6∂Z≤N−1u(0, · )‖2L2

x
+ ‖〈r〉

p̃−2
2 Z≤N−1u(0, · )‖2L2

x

+ sup
t

(∫
〈r〉p̃|h|

(
|∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx
)

+

∫ ∞
0

∫
〈r〉p̃|2hZ≤N−1u|

(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx dt

+

∫ ∞
0

∫
〈r〉p̃−1|h||∂Z≤N−1u|

(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx dt

+

∫ ∞
0

∫
〈r〉p̃|∂h||6∂Z≤N−1u|

(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx dt

+

∫ ∞
0

∫
〈r〉p̃

(
|6∂h|+ |hαβωαωβ |

)
|∂Z≤Nu|

(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx dt

+

∫ ∞
0

∫
〈r〉p̃−3

(
r|∂h|+ |h|

)
|Z≤N−1u|2 dx dt+ ‖Z≤N−1u‖2LE1 + ‖∂Z≤N−1u‖2L∞t L2

x
.

Using the Schwarz inequality, we see that∫ ∞
0

∫
〈r〉p̃|2hZ≤N−1u|

(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx dt
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≤ ‖〈r〉
p̃+1
2 2hZ

≤N−1u‖L2
tL

2
x

(
‖〈r〉

p̃−1
2 6∂Z≤N−1u‖L2

tL
2
x

+ ‖〈r〉
p̃−3
2 Z≤N−1u‖L2

tL
2
x

)
and the second factor can be absorbed by the square of the left side of (2.18) after

applying ab ≤ ca2 + 1
4cb

2.

As above, we now seek to control the third, fifth, sixth, seventh, and eighth

terms by a small parameter times the square of the left side of (2.18). These

terms can then be absorbed for a sufficiently small choice of the parameter, which

will complete the proof.

We first note that

sup
t

∫
〈r〉p̃|h|

(
|∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx

. ‖Z≤2h‖L∞t L2
x
‖∂Z≤N−1u‖L∞t L2

x

·
(
‖〈r〉

p̃
2 6∂Z≤N−1u‖L∞t L2

x
+ ‖〈r〉

p̃−2
2 Z≤N−1u‖L∞t L2

x

)
. δ
(
‖∂Z≤N−1u‖2L∞t L2

x
+ ‖〈r〉

p̃
2 6∂Z≤N−1u‖2L∞t L2

x
+ ‖〈r〉

p̃−2
2 Z≤N−1u‖2L∞t L2

x

)
where we have used (2.12), (2.16), (2.13), and the assumption that p̃ < 2.

For the remaining terms, we repeatedly use the hypothesis p̃ < 2, (2.12), and

(2.13) and obtain the bounds:∫ ∞
0

∫
〈r〉p̃−1|h||∂Z≤N−1u|

(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx dt

. δ‖Z≤N−1u‖LE1

(
‖〈r〉

p̃−1
2 6∂Z≤N−1u‖L2

tL
2
x

+ ‖〈r〉
p̃−3
2 Z≤N−1u‖L2

tL
2
x

)
,

∫ ∞
0

∫
〈r〉p̃|∂h||6∂Z≤N−1u|

(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx dt

. δ‖〈r〉
p̃−1
2 6∂Z≤N−1u‖L2

tL
2
x

(
‖〈r〉

p̃−1
2 6∂Z≤N−1u‖L2

tL
2
x

+ ‖〈r〉
p̃−3
2 Z≤N−1u‖L2

tL
2
x

)
,

and ∫ ∞
0

∫
〈r〉p̃−3

(
r|∂h|+ |h|

)
|Z≤N−1u|2 dx dt . δ‖〈r〉

p̃−3
2 Z≤N−1u‖2L2

tL
2
x
,

as desired. In all three cases, the δ appears as a result of the bound on the first

term in (2.13). Arguing similarly to (2.17), using the bound on the last two terms

of (2.13), results in∫ ∞
0

∫
〈r〉p̃

(
|6∂h|+ |hαβωαωβ |

)
|∂Z≤Nu|

(
|6∂Z≤N−1u|+ |Z

≤N−1u|
〈r〉

)
dx dt
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. ‖∂Z≤Nu‖2L∞t L2
x

+ δ
(
‖〈r〉

p̃−1
2 6∂Z≤N−1u‖2L2

tL
2
x

+ ‖〈r〉
p̃−3
2 Z≤N−1u‖2L2

tL
2
x

)
.

Combining these bounds immediately gives (2.18). �

3. Proof of Theorem 1.1

We begin by establishing the following lemma concerning the interaction of

the admissible vector fields with the null condition. Variants of this lemma are

commonplace.

Lemma 3.1. Suppose that AI,αβJK and BI,γαβJK satisfy (1.3). Then, on |x| ≥ 1,

(3.1) |Z≤N (AI,αβJK ∂αu
J∂βv

K)| . |Z≤N 6∂u||Z≤N/2∂v|+ |Z≤N/2 6∂u||Z≤N∂v|

+ |Z≤N∂u||Z≤N/2 6∂v|+ |Z≤N/2∂u||Z≤N 6∂v|,

and

(3.2)

|Z≤N (BI,γαβJK ∂γu
J∂α∂βv

K)| . |Z≤N 6∂u||Z≤N/2+1∂v|+ |Z≤N/2 6∂u||Z≤N+1∂v|

+ |Z≤N∂u|
(
|Z≤N/2+1 6∂v|+ r−1|Z≤N/2∂v|

)
+ |Z≤N/2∂u|

(
|Z≤N+1 6∂v|+ r−1|∂Z≤Nv|

)
.

for any N . Moreover, for any multi-index µ with |µ| ≤ N ,

(3.3) |Zµ(BI,γαβJK ∂γu
J∂α∂βv

K)−BI,γαβJK ∂γu
J∂α∂βZ

µvK |

. |Z≤N 6∂u||Z≤N/2+1∂v|+ |Z≤N/2 6∂u||Z≤N∂v|

+ |Z≤N∂u|
(
|Z≤N/2+1 6∂v|+ r−1|Z≤N/2∂v|

)
+ |Z≤N/2∂u|

(
|Z≤N 6∂v|+ r−1|Z≤N∂v|

)
.

Proof. By (1.3), we have

AI,αβJK ∂αu
J∂βv

K = AI,αβJK (∂α − ωα∂r)uJ∂βvK +AI,αβJK ωα∂ru
J(∂β − ωβ∂r)vK .

The result (3.1) then follows from the product rule.

We write

BI,γαβJK ∂γu
J∂α∂βv

K = BI,γαβJK (∂γ − ωγ∂r)uJ∂α∂βvK

+BI,γαβJK ωγ∂ru
J(∂α − ωα∂r)∂βvK

+BI,γαβJK ωγωα∂ru
J∂r(∂β − ωβ∂r)vK .
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We further note that

BI,γαβJK ωγ∂ru
J(∂α − ωα∂r)∂βvK = BI,γαβJK ωγ∂ru

J∂β(∂α − ωα∂r)vK

+
1

r
BI,γαjJK ωγ∂ru

Jωα 6∇jvK +
1

r
BI,γjkJK ωγ∂ru

J(δjk − ωjωk)∂rv
K .

The desired results (3.2) and (3.3) are again a result of the product rule. �

We solve (1.1) by considering an iteration where u0 ≡ 0 and uk solves

2uIk = AI,αβJK ∂αu
J
k−1∂βu

K
k−1 +BI,γαβJK ∂γu

J
k−1∂α∂βu

K
k ,

uk(0, · ) = f, ∂tuk(0, · ) = g.
(3.4)

We let 0 < 2p < p̃ < 2.

Boundedness: Our first task will be to show uniform boundedness of the se-

quence (uk). We set

Mk =‖〈r〉
p−1
2 Z≤N 6∂uk‖L2

tL
2
x

+ ‖〈r〉
p̃−1
2 Z≤N−1 6∂uk‖L2

tL
2
x

+ ‖Z≤N∂uk‖L∞t L2
x

+ ‖Z≤Nuk‖LE1 .

For k = 1, we may take hI,αβJK ≡ 0. From (2.14) and (2.18), which are being

applied to a homogeneous equation, and (1.4), there exists a constant C0 so that

M1 ≤ C0ε.

We will use induction to show that

(3.5) Mk ≤ 2C0ε, for all k ∈ N.

Assuming that the bound holds at the (k − 1)st level, we set

hI,αβK = −BI,γαβJK ∂γu
J
k−1.

By (1.3), for any I, J,K, we have

hI,αβJK ωαωβ = −BI,γαβJK ωαωβ∂γuk−1 = −BI,γαβJK ωαωβ(∂γ − ωγ∂r)uk−1.

Thus, since p̃ < 2 and using (1.5),

‖Z≤3h‖L∞t L2
x

+ ‖〈r〉
p̃−1
2 Z≤2 6∂h‖L2

tL
2
x

+ ‖〈r〉
p̃−1
2 Z≤3(ωαωβh

αβ)‖L2
tL

2
x

. ‖Z≤3∂uk−1‖L∞t L2
x

+ ‖〈r〉
p̃−1
2 Z≤3 6∂uk−1‖L2

tL
2
x

+ ‖Z≤3uk−1‖LE1 .

By the inductive hypothesis, this is O(ε), which establishes (2.13). Thus by (2.14)

and (2.18) it will suffice to establish

(3.6) ‖〈r〉
p+1
2 2hZ

≤Nuk‖L2
tL

2
x

+ ‖〈r〉
p̃+1
2 2hZ

≤N−1uk‖L2
tL

2
x
.M2

k−1 +Mk−1Mk.
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As noted previously the problem of multiple good derivatives is only an artifact

of considering estimates for perturbations of 2. With (2.13) established, Propo-

sition 2.5 completely addresses the issue, and the subsequent argument is quite

reminiscent of the simpler semilinear case.

We first notice that

2hZ
µuk =Zµ(AI,αβJK ∂αu

J
k−1∂βu

K
k−1) + Zµ(BI,γαβJK ∂γu

J
k−1∂α∂βu

K
k )

−BI,γαβJK ∂γu
J
k−1∂α∂βZ

µuKk .

By (3.1) and (3.3), it follows that

(3.7) ‖〈r〉
p+1
2 2hZ

≤Nuk‖L2
tL

2
x
. ‖〈r〉

p+1
2 |Z≤N 6∂uk−1||Z≤

N
2 ∂uk−1|‖L2

tL
2
x

+‖〈r〉
p+1
2 |Z≤N

2 6∂uk−1||Z≤N∂uk−1|‖L2
tL

2
x

+‖〈r〉
p+1
2 |Z≤N 6∂uk−1||Z≤

N
2 +1∂uk|‖L2

tL
2
x

+ ‖〈r〉
p+1
2 |Z≤N

2 6∂uk−1||Z≤N∂uk|‖L2
tL

2
x

+ ‖〈r〉
p+1
2 |Z≤N∂uk−1||Z≤

N
2 +1 6∂uk|‖L2

tL
2
x

+ ‖〈r〉
p+1
2 |Z≤N

2 ∂uk−1||Z≤N 6∂uk|‖L2
tL

2
x

+ ‖〈r〉
p−1
2 |Z≤N

2 ∂uk−1||Z≤N∂uk−1|‖L2
tL

2
x

+‖〈r〉
p−1
2 |Z≤N∂uk−1||Z≤

N
2 +1∂uk|‖L2

tL
2
x
+‖〈r〉

p−1
2 |Z≤N

2 ∂uk−1||Z≤N∂uk|‖L2
tL

2
x
.

We notice that the last three terms provide the appropriate bounds when |x| ≤ 1.

For each of the first six terms in the right, we apply (2.12) to the term with fewer

vector fields and measure the good derivative factor in a weighted L2
tL

2
x-space

and the other factor in an energy space L∞t L
2
x. Provided N

2 + 3 ≤ N , by (2.12),

we have

‖〈r〉
p+1
2 Z≤NwZ≤

N
2 +1v‖L2

tL
2
x

+ ‖〈r〉
p+1
2 Z≤

N
2 +1wZ≤Nv‖L2

tL
2
x

(3.8)

. ‖〈r〉
p−1
2 Z≤Nw‖L2

tL
2
x
‖Z≤Nv‖L∞t L2

x

and, since p < 2,

(3.9) ‖〈r〉
p−1
2 Z≤NwZ≤

N
2 +1v‖L2

tL
2
x
. ‖Z≤Nw‖L∞t L2

x
‖Z≤Nv‖LE .

Indeed, (3.9) follows as the square of the left side is controlled by∑
j≥0

2(p−1)j‖Z≤NwZ≤N
2 +1v‖2L2

tL
2
x(R+×{2j−1≤〈x〉≤2j}),

which after an application of (2.12) is

.
(∑
j≥0

2p−2
)
‖Z≤Nw‖2L∞t L2

x
sup
j≥0

2−j‖Z≤N
2 +3v‖2L2

tL
2
x(R+×{2j−2≤〈x〉≤2j+1}),
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from which (3.9) follows readily. Using (3.8) and (3.9) repeatedly, it follows that

the right side of (3.7) is

.M2
k−1 +Mk−1Mk.

This provides the bound for the first term in the left side of (3.6). The bound

for the second term is nearly identical where all of the p are replaced by p̃ and

the N by N − 1.

Convergence: We now establish that the sequence (uk) is Cauchy. It, thus,

converges, and its limit is the desired solution.

To this end, we set

Ak =‖〈r〉
p−1
2 Z≤N−1 6∂(uk − uk−1)‖L2

tL
2
x

+ ‖Z≤N−1∂(uk − uk−1)‖L∞t L2
x

(3.10)

+ ‖Z≤N−1(uk − uk−1)‖LE1 .

We will prove that

(3.11) Ak ≤
1

2
Ak−1 for all k.

We begin by noting

2(uIk − uIk−1) = AI,αβJK ∂α(uJk−1 − uJk−2)∂βu
K
k−1

+AI,αβJK ∂αu
J
k−2∂β(uKk−1 − uKk−2) +BI,γαβJK ∂γu

J
k−1∂α∂β(uKk − uKk−1)

+BI,γαβJK ∂γ(uJk−1 − uJk−2)∂α∂βu
K
k−1.

With hI,αβK = −BI,γαβJK ∂γu
J
k−1, as above, (3.5) implies (2.13). We may, thus,

apply (2.14). Since uk − uk−1 has vanishing Cauchy data, it suffices to bound

(3.12) ‖〈r〉
p+1
2 2hZ

≤N−1(uk − uk−1)‖L2
tL

2
x
. (Mk−1 +Mk−2)Ak−1 +Mk−1Ak

as we may then apply (3.5) and absorb Ak to the other side, which will yield

(3.11) as long as ε is sufficiently small.

Using (3.1), (3.3), and (3.2), we have

(3.13) ‖〈r〉
p+1
2 2hZ

≤N−1(uk − uk−1)‖L2
tL

2
x

.
∥∥∥〈r〉 p+1

2 |Z≤N−1 6∂(uk−1 − uk−2)|
(
|Z≤

N+1
2 ∂uk−1|+ |Z≤

N−1
2 ∂uk−2|

)∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p+1

2 |Z≤
N−1

2 6∂(uk−1 − uk−2)|
(
|Z≤N∂uk−1|+ |Z≤N−1∂uk−2|

)∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p+1

2 |Z≤N−1∂(uk−1 − uk−2)|
(
|Z≤

N+1
2 6∂uk−1|+ |Z≤

N−1
2 6∂uk−2|

)∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p+1

2 |Z≤
N−1

2 ∂(uk−1 − uk−2)|
(
|Z≤N 6∂uk−1|+ |Z≤N−1 6∂uk−2|

)∥∥∥
L2

tL
2
x
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+
∥∥∥〈r〉 p+1

2 |Z≤
N+1

2 ∂(uk − uk−1)||Z≤N−1 6∂uk−1|
∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p+1

2 |Z≤N−1∂(uk − uk−1)||Z≤
N−1

2 6∂uk−1|
∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p+1

2 |Z≤
N+1

2 6∂(uk − uk−1)||Z≤N−1∂uk−1|
∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p+1

2 |Z≤N−1 6∂(uk − uk−1)||Z≤
N−1

2 ∂uk−1|
∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p−1

2 |Z≤N−1∂(uk−1 − uk−2)|
(
|Z≤

N+1
2 ∂uk−1|+ |Z≤

N−1
2 ∂uk−2|

)∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p−1

2 |Z≤
N−1

2 ∂(uk−1 − uk−2)|
(
|Z≤N∂uk−1|+ |Z≤N−1∂uk−2|

)∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p−1

2 |Z≤N−1∂(uk − uk−1)||Z≤
N−1

2 ∂uk−1|
∥∥∥
L2

tL
2
x

+
∥∥∥〈r〉 p−1

2 |Z≤
N+1

2 ∂(uk − uk−1)||Z≤N−1∂uk−1|
∥∥∥
L2

tL
2
x

.

We proceed with an argument that is akin to that used in the proof of (3.5).

For each term, we apply (2.12) to the lower order factor. We then measure the

“good” derivative factor in a weighted L2
tL

2
x space, while the other factor is placed

into an energy space. This approach, which is based in (3.8) and (3.9), shows that

the first four terms in the right side of (3.13) are bounded by

‖〈r〉
p−1
2 Z≤N−1 6∂(uk−1 − uk−2)‖L2

tL
2
x

×
(
‖Z≤

N+5
2 ∂uk−1‖L∞t L2

x
+ ‖Z≤

N+3
2 ∂uk−2‖L∞t L2

x

)
+ ‖〈r〉

p−1
2 |Z≤

N+3
2 6∂(uk−1 − uk−2)|‖L2

tL
2
x

×
(
‖Z≤N∂uk−1‖L∞t L2

x
+ |Z≤N−1∂uk−2‖L∞t L2

x

)
+ ‖Z≤N−1∂(uk−1 − uk−2)‖L∞t L2

x

×
(
‖〈r〉

p−1
2 Z≤

N+5
2 6∂uk−1‖L2

tL
2
x

+ ‖〈r〉
p−1
2 Z≤

N+3
2 6∂uk−2‖L2

tL
2
x

)
+ ‖Z≤

N+3
2 ∂(uk−1 − uk−2)‖L∞t L2

x

×
(
‖〈r〉

p−1
2 Z≤N 6∂uk−1‖L2

tL
2
x

+ ‖〈r〉
p−1
2 Z≤N−1 6∂uk−2‖L2

tL
2
x

)
,

which, provided that N+5
2 ≤ N , is

. Ak−1
(
Mk−1 +Mk−2

)
.
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Similarly, the fifth through eighth terms in the right side of (3.13) can be con-

trolled by

‖Z≤
N+5

2 ∂(uk − uk−1)‖L∞t L2
x
‖〈r〉

p−1
2 Z≤N−1 6∂uk−1‖L2

tL
2
x

+ ‖Z≤N−1∂(uk − uk−1)‖L∞t L2
x
‖〈r〉

p−1
2 Z≤

N+3
2 uk−1‖L2

tL
2
x

+ ‖〈r〉
p−1
2 |Z≤

N+5
2 6∂(uk − uk−1)‖L2

tL
2
x
‖Z≤N−1∂uk−1|‖L∞t L2

x

+ ‖〈r〉
p−1
2 |Z≤N−1 6∂(uk − uk−1)‖L2

tL
2
x
‖Z≤

N−1
2 ∂uk−1‖L∞t L2

x
,

which in turn is . Ak ·Mk−1 provided that N+5
2 ≤ N − 1. Relying on the fact

that p < 2, the remaining terms in (3.13) (namely the last four in the right side)

are

. ‖Z≤
N+3

2 ∂(uk−1 − uk−2)‖L∞t L2
x

(
‖Z≤Nuk−1‖LE1 + ‖Z≤N−1uk−2‖LE1

)
+ ‖Z≤N−1∂(uk−1 − uk−2)‖L∞t L2

x

(
‖Z≤

N+5
2 uk−1‖LE1 + ‖Z≤

N+3
2 uk−2‖LE1

)
+ ‖Z≤N−1∂(uk − uk−1)‖L∞t L2

x
‖Z≤

N+3
2 uk−1‖LE1

+ ‖Z≤
N+5

2 ∂(uk − uk−1)‖L∞t L2
x
‖Z≤N−1uk−1‖LE1

As this is

.
(
Mk−2 +Mk−1

)
Ak−1 +Mk−1 ·Ak,

we have completed the proof of (3.12), which also completes the proof of Theo-

rem 1.1.
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