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Abstract

We consider quasilinear wave equations in (1 + 3)-dimensions where the nonlinearity
F(u,u',u") is permitted to depend on the solution rather than just its derivatives.
For scalar equations, if (83F )(0,0,0) = 0, almost global existence was established
by Lindblad. We seek to show a related almost global existence result for coupled
systems of such equations. To do so, we will rely upon a variant of the r?-weighted
local energy estimate of Dafermos and Rodnianski that includes a ghost weight akin
to those used by Alinhac. The decay that is needed to close the argument comes from
space—time Klainerman—Sobolev type estimates from the work of Metcalfe, Tataru,
and Tohaneanu.

Keywords Nonlinear - Wave equation - Almost global existence - Local energy
estimate

1 Introduction

In this article, we shall examine long-time existence for systems of (14-3)-dimensional
quasilinear wave equations with small initial data where the nonlinearity is permitted
to depend on the solution rather than just its derivatives. In particular, for (] = 812 —A,
we shall examine
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Ou! = Flu,u',u”), (t,x)eRyxR3 I=12,....M, (.
u@©, -)=rf, o, -)=g. '
Hereu = (u', ..., u™). We use the notation u’ = du = (d;u, Vu) for the space—time

gradient. The smooth function F vanishes to second order at the origin, and it is linear
in the u” components. Moreover, we shall assume that

8,78,k F1)(0,0,0)=0, VI,J,K=1,2,...,M, (1.2)

which has the effect of disallowing u?-type terms at the quadratic level for F. In [11],
almost global existence, which shows that the lifespan grows exponentially as the size
of the data shrinks, was proved for scalar equations. In the current article, we seek
similar lower bounds on the lifespan for systems.

In the sequel, we use Einstein’s summation convention. Repeated Greek letters
o, B, y are understood to sum from O to 3 where xo = ¢. Repeated lower case Roman
letters i, j, k are summed from 1 to 3, and repeated upper case letters 7, J, K will be
summed from 1 to M.

For simplicity, we shall truncate the nonlinearity at the quadratic level:

Flu,u' v’y = a;}?ujaaul( + bg’gﬂaaujagul(
+ AL UK g + BIEPY 5,uK g 0pu” . (1.3)

In the small data regime, higher order terms are better behaved. The constants will be
assumed to satisfy the symmetry conditions

Lo _ ,1,Ba _ ,J,af LaBy _ pl.Bay _ pJ.afy
AJK _AJK _AIK ’ BJK _BJK _BIK : (1.4)

Our main result is the following statement of almost global existence.

Theorem 1.1 Suppose that f, g € (CSO(R?’))M. Moreover, assume that the smooth
function F vanishes to second order at the origin, satisfies (1.2), and is subject to
the symmetry conditions (1.4). Then, for N € N sufficiently large, there are constants
¢, &0 > 0 so that if

Yo NHflla+ D gl < (15)

[u|<N+1 || <N
with & < &g, then (1.1) has a unique solution with u € (C*°([0, T,] x R3)YM where
T, = exp(c/s3). (1.6)

To aid the exposition, we have restricted to the case of compactly supported initial
data. Without loss of generality, we shall take

supp f!,suppg! c {|x| <2}, VI=1,2,..., M. 1.7
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Small data in a sufficiently weighted space would also suffice. In [11], the lower bound
of the lifespan was exp(c/¢). The difference in the lifespan between [11] and Theorem
1.1 is primarily due to a logarithmic loss that occurs as a part of an endpoint Hardy
inequality. See Lemma 2.5. While refinements of our argument to improve the power
in (1.6) are likely possible, it is not clear what the sharp power is.

Equations such as (1.1) with nonlinearity that depends on the solution rather than
just its derivatives do not mesh as simply with the energy methods that are typically
employed to prove long-time existence. In [7], without the hypothesis (1.2), a lower
bound of exp(c/e) was established in (1 + 4)-dimensions. For scalar equations, the
additional hypothesis (1.2) was, moreover, found to be sufficient to guarantee global
existence for sufficiently small data. The analogous results in (1 + 3)-dimensions
appeared in [11] where the lifespan was shown to exceed c/e? without (1.2) and
almost global existence was provided for scalar equations.

In both [7, 11], the restriction to scalar equations is necessitated by the use of the
chain rule to write u - du = %8142 interactions in divergence form. This special form,
in turn, allows for easier estimation of the solution rather than only its derivatives. See,
e.g., [11, Proposition 1.8]. The article [13] extended the result of [7] by establishing
small data global existence for systems (1.1) subject to (1.2) in (1 + 4)-dimensions.
We establish the (1 + 3)-dimensional analog here.

The principle source of decay in our proof'is obtained from space—time Klainerman—
Sobolev estimates as were proved in [19]. This will be paired with variants of the
integrated local energy decay estimates. In [2], r”-weighted local energy estimates,
which provide improved bounds on the “good” components of the gradient: 9; + 0,
and ¥ := V — 0,, were proved. These will be combined with a ghost weight, which
originates from [1]. This permits a further improvement of the bounds in the vicinity of
the light cone and meshes particularly well with the space—time Klainerman—Sobolev
estimates of [19].

While the proof uses the method of invariant vector fields, it will not rely on the
Lorentz boosts. While Lorentz boosts are perfectly acceptable for systems such as
(1.1), they can limit further extensions to, e.g., multiple speed settings, equations in
exterior domains, or equations on stationary background geometries. Our proof is
readily adaptable to Dirichlet wave equations exterior to, say, star-shaped obstacles.
We do not include these extraneous details here. When combined with [3, 4, 16],
it (largely) completes the extension of the long-time existence results of [7, 11] to
exterior domains. The work on systems in [13] was also completed exterior to star-
shaped obstacles. The restriction to star-shaped obstacles is likely a convenience. It is
anticipated that any geometry that permits a sufficiently rapid decay of local energy
would suffice. See, e.g., [5, 6].

The key aspects to the proof are to effectively bound the solution # when typical
energy methods estimate du and to obtain additional decay from the derivative that
must be present in at least one factor of every nonlinear term. In particular, it was
the former that restricted the analysis to scalar equations in preceding results. The
r?-weights and ghost weights help with both aspects. In particular, when combined
with rather standard Hardy-type estimates, improved bounds on the local energy of
the solution without derivatives, when compared to e.g. (2.2), result. When attempting
to gain additional decay from the derivative that must appear in at least one factor of
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every term of the nonlinearity, one often relies on the scaling vector field, which near
the light cone gives additional decay in # — |x|. The ghost weight allows us to take
advantage of this additional decay off of the light cone.

Since derivatives can be exchanged for extra decay using the scaling vector field
and since the r”-weighted and ghost weighted estimates allow for much larger weights
for the good derivatives, which in essence provides additional decay that can be used
on other factors, one can quickly become convinced that the worst possible nonlinear
terms are of the form u(9; — 0, )u. Moreover when all of the vector fields land on the
differentiated factor, one cannot afford to lose the additional vector field that would
result from using the scaling vector field to get additional decay. In this case, we move
the 9, — 9, using integration by parts. Within the local energy estimates, it could land
on the weights or the lower order factor, which allows us to gain additional decay,
in the latter case by using the scaling vector field. Additionally it could land on the
multiplier, which has the basic form d; + 9, and modulo better behaved terms results
in [ effectively turning these quadratic interactions into better cubic interactions.

This article is organized as follows. In the next subsection, we shall gather some
notation and preliminary results that will be used frequently throughout the paper. In
Sect. 2, the integrated local energy estimates will be proved. Section 3 contains our
sources of decay, which are primarily space—time versions of the Klainerman—Sobolev
inequality. Finally, the main theorem is proved in Sect. 4.

1.1 Notation
The vector fields that we rely on are
Z = (0, 01, 0o, 03, 21, 22, 23, 5)
where
S=1td+ro, QL=xxV

represent the scaling vector field and generators of (spatial) rotations, respectively. We
will frequently rely on the orthogonal decomposition

X
V=0 +7.

and we shall use g = (9; 4+ 9,, ¥) as an abbreviation for the “good” derivatives. We
note that

X
= - xQ,
v 7 X
and as such,
1
| Vu| < ;IZMI- (1.8)
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Moreover, the following commutator will be used frequently in the proofs of local
energy estimates, as it was in the seminal work [21]:

1
V. 9] =1¥.0:1=—¥. 1.9)
The admissible vector fields are well known to satisfy
(0,01 =[0,Q;1=0, [O,S]=20. (1.10)

Moreover, we have
1
[Z,0] € span(d), |[Z, Jlu| < ;IZMI + [ Jul. (L.11)

We shall abbreviate

|Z=Ny| = Z |ZHul, 19=Nu| = Z |07 u|.

[N [ul<N

We use L” L9 as an abbreviation for L7 LY ([0, T] x R3) = LP([0, T]; L (R%)).
In several circumstances, it will be convenient to do an inhomogeneous dyadic
decomposition of R3, and for this purpose we denote

(7 17
Ag = {R < |x| <2R), Ag= {gR < x| < §R] ifR>1,

and A; = {|x|] <2}, A} = {|x| < 17/4}. For the standard integrated local energy
estimates, we shall employ the following notations from [19, 24]:

—j/2 -1
lullze = sup 27/l 220,714 lullpgr = 1Qu, |x|""wllLE-

j=0 2’

In the proof of the local energy estimates, we will often desire a C'(R), bounded,
nondecreasing function and for these purposes set

oy(z) = U > 0.

z
U+lzl’
In the sequel, we shall also need dyadic decompositions in ¢ — r, so we set

Xy ={(,x)e[0,T] xR :U<t—r <2U}forU > 1,
X, ={(t,x) e [0, TI xR : |r—r| <2},
with a similar enlargement being denoted by Xy .
The estimates from [19] rely on a mixed decomposition where the cone is divided

in |x| away from the light cone and in # — |x| near the cone. We set C = {r <t 4+ 2}.
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Due to the simplifying assumption that the data are compactly supported, it suffices
to consider only this region, though we believe that these estimates can be extended
to all of [0, 7] x R? in a straightforward fashion.

We first divide into dyadic intervals in time C; = {t € [7,2t]N[0, T],r <t +2}.
Next, we shall decompose dyadically in r or t — r depending on the proximity to the
light cone. For R, U > 1, we set

CR=c,n{R<r<2R), CY=C,Nn{U <t—r <2U)
and
CR=l=—c,n{r<2), cl='=c,n{r—-rl<2).
We note that
= U cflul U ¢f uce,
I<R<t/4 I<U<t/4

where

C?:Cfﬂ{t—rz%}ﬂirz

b

We use C f, C y to denote enlargements of these sets on both the R /U and t scales. In
the latter case, we enlarge from [z, 27]N [0, T]to [(7/8)7, 2t] N[0, T']. Subsequently

CX and CY will indicate further enlargements. The key observation is that

N

(ry~R, t—r~t, onCR CR CR withl<R<rt/4
and

r~t, (t—ry~U, onCY,CY,CY, withl<U <t/4.

In this sense, the CZ region can be thought of as either a C 5 oraC g region. Here and
throughout, R, U are understood to run over dyadic values. Here we have set (r) to
be a smooth function so that () > 3 and (r) =~ r for r > 1. For simplicity, we could
simply take (r) = 3 +r)and (T) = 3+ T).

In the sequel, we shall need cutoffs to localize to certain regions. We fix 8 € C*°(R)
sothat 8 = 1forz < 1 and 8 =0 for z > 2. We then set

B<r(2) = B(z/R), B>r(2) =1—Pr(2).
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2 Local Energy Estimate

In this section, we shall collect some integrated local energy estimates, which will
serve as the main linear estimate for our proof of almost global existence. The first
of these is a now standard version of the original estimates of [21]. We proceed to
explore a variant of this that only bounds the “good” derivatives but with much better
weights. What results is a mixture of the ghost weight method of [1] (see also the
related estimates in [12]) and the r”-weighted local energy estimates of [2].

In this examination of a quasilinear problem, it will be helpful to have estimates on
small, time-dependent perturbations of the flat operator [J. To this end, we define

(Opu)! = (82 —Nu! — hl’aﬁ(t,x)Baa u’.
t J B
Here we shall assume that

Wy = b = n) P e (10, T x BY). @1

We shall also abbreviate

M

3 M 3
=2 3 b = Y D[]

1,J=1a,8=0 I,J=1a,B,y=0

We begin by recalling the local energy estimate for perturbations of [ that was
proved in [15]. See, also, [14, 17, 18, 23], and [20].

Theorem 2.1 Suppose that h satisfies (2.1), that |h| is sufficiently small, that u €
(C2([0, T1 x R3WM  and that for all t € [0, T], |aflu(r x)| = Oas |x| = oo. Then,

Jul
loull o + el o1 S 19u(0, 1%, + //|Dhu|(|au|+ )dxdt

/f(lahl+—> |au|<|a |+U) dxdr. 22)

The proof of the theorem follows by pairing Uju with the multiplier Co,u +
0,j(r)oyu + U2+(r)u, integrating over a space—time slab, and integrating by parts.

We next consider the following variant of Theorem 2.1. It represents a combination
of the ideas of [1, 2]. The former considered multipliers with principal part of the
form r?(9; + 9,)u. Rather than considering associated flux terms to bound terms
similar to the third term in the left side below, we shall instead modify the multiplier
using a ghost weight, which originates in [1]. This more readily allows us to perform
necessary manipulations to prevent a loss of regularity due to the quasilinear nature of
the problem. It will also allow us to subsequently integrate by parts to control a term
using ideas akin to normal forms.
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Theorem2.2 Fix 0 < p < 2. Suppose that h satisfies (2.1), that u € (C([0, T] x
+2
R3WM | and that for all t € [0, T], |r 2 9=lu(t, x)| = 0as|x| — oo. Then for any
U >0,
lIr 7 a(ru>||LmLz +rT a(ru)lleLz +Ir'T (UU(I — )2 @ + Oy NGOIEYS
p=2 |ul
ST 0. I+ sup [ rrinau(oul + ) dx

t€l0,T]

+ sup ‘/frp Lemovt=nmy,y . <8,+8>(ru)dxdt’

tel0,T]

+//r1’—1 |8h|+u>|8u||(8,+8r)(ru)|dxdt
0

T
+//r”_1|h||8u|<|7u|+m> dx d
r
0
T
+f/|h|rP*‘ag,(t—r)|au||(a,+ar)(ru)|dxdt

//rp (a,+a)h|+| |)|3u| dx dr. 2.3)

The implicit constant is independent of both T and U.

Proof We first note that

t
1
/ / O rPe=o 0= (8 + 6, + — Ju! dx dr
r
0
t oo
:///(8;2 - 8r2 — y W)(VM)I _rpe*UU(tfr)(at +ar)(ru)1 d(x)drd[

0 0 §2

Using integration by parts, we see that the right side is equal to

t
lf/w/ rpe_UU(l_r)<8t _3r>
2) Jo Je

0

t
o0
+// /rpefau(tfr)y(ru)’ . W(Bt + 8,)(ru)[ dwdrdz.
0
0 s2

2
dw dr dt

(a, n a,)(ru)
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Relying on (1.9), we further see that this is the same as

//r” —~out=r)
///rp 1 —oy(t—r)
0 0
/‘f/rpal/](t—r)e_(’"(l_r)
0 0 §2

t
+/ //rpfle*“lf(f*r)w(m)ﬂdwdrdt
0 0 &
1 t oo
+§/// rPem 0 (340, )| ¥ )P deodr dr.
S2
0 0

A final integration by parts then gives that

(a +o )(ru)‘ dwdr‘

(8, + 0 )(ru)‘ dwdr dt

2
dodr dt

( + o) ow

t
1
f/(Du)]rpe_”U('_’) <8t + 0, + —)ul dx dr
r

0
1 T 2
A ey
0 2
r o0
+§///rpflefay(t7r)
0 0 §2
r o0
+(1 - g)///rp_le_”l’(’_r)|W(ru)|2da)drdt
0 0 §2
1 r o0
+5/'//rpa,’](t—r)e_"‘/(’_’)

0 0 s2

+ |y7(ru)|2) dwdr i .

(8, + 8r>(ru) ‘2 dwdr dt

(a, + E)r)(ru)‘z dodrdr.  (2.4)

This string of equalities proves the desired estimate when i = 0.
We now consider the perturbation. Using integration by parts, we note that
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!
1
— / / hj’“ﬂaaa,guf pPemou =) (8, + 9, + —)ul dx dr
r
0
t
— _/hj’of’rf’—le—"u(f—”a,guf(at + o, )rulydx|
t=
t
+ / /(8ah5’aﬂ)r”_le—o"(’_r)aﬂu](3; + 8,) (ru’)dx dr
0
t
+ / / hg’aﬂr71 Ou (rp67“U(’7r))3ﬁuJ(3, + 3,)(ru1) dx dr
0
t 1
+ / / WP rr e g o (o + o, + — Ju' dedr.
r
0
Commuting the 9, using (1.9) and using the symmetries (2.1), we see that
t I 1
f /hj’aﬂrpefolf(“r)a,guj% (8, + 0 + —)uI dx dr
0 r
t
= ffhg’kﬁrp_le_‘w(’_r)aﬂu]Wkul dx dt
0
!
—//h;’kﬂrpfzeﬂm(t*’)ﬁulalgujdx dt
r
0
1 t 2
+3 f / Wyl rrem O (o 4 0y + ) [pu” du” | dr.
r
0
Combining the above two identities and integrating by parts, we obtain

t
1
—/fhy“ﬂaaaﬂuf P emoul=D) (at Yo+ -)u’dx dr
r
0

t
t=0

= —/hi’oﬂrpflef‘w(l*r)a,guj(3, + ar)(rul) dx‘

t

1
+§/hg’aﬂrpefw(t*r)aﬁu]aauldx

t=0
t

+f/(Bahg’aﬂ)rl’_le_UU(’_r)aﬂuJ(8; +0,) (ru”) dx dr
0
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t
+p//hé»kﬂx_krl’*ze*"l/(”’)aﬁuj(8, +8r)(rul)dxdl
r
0
1
+/fh;’k’sr”_le_auo_’)algu]qul dx dt
0
t
—//h;’kﬂrp_ze_”l’(t_r)&ulaﬂujdxdt
r
0

+ / / hg’aﬂa)arp_lol/,(t — r)e_"U(’_r)aﬂuJ(at +8,)(ru’) dx dr
0
1 t

— a + 8, (WP yrpe—ovt=n g7 5yl dx dr
2 0 J B

t
—g//hg’aﬂrp_le_[’"(t_r)8/3Ltj8au1 dx dr. (2.5)
0

Here w = (—1, x/r). Our estimate (2.3) is an immediate consequence of (2.4) and
(2.5) and taking the supremum over ¢ € [0, T'].

We next consider a Hardy-type inequality to obtain associated bounds on the
solution, which are analogous to the bounds on |||x| ™ u|| . £ in (2.2).

Lemma 2.3 Let0O < p < 2. Supposeu € C'([0, T1xR3) andthatforeveryt € [0, T,
[rP2u(t, x)| — 0 as |x| — oo. Then

1P ullpa g + 1T wlpere S 167w, gz + 1rF Jwl 2z (26)

Proof By integrating by parts, for any ¢ € [0, T], we have

1
>, rP72u2 (1, x)dx—l—//rp 3u%(r, x)dx dr

2_1 rP72u(t, x)dx—l——/// (0 + 39)(r?" 2 (ru)? dr dw dt

- 1p P20, x)dx——/ //rp 2ru) (@, + 8,)(ru) dr deodr.
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As the Schwarz inequality allows us to bound the last term by

12,4 1/2

t
// P=3,2 dx dt //rﬂ [(8; + 0,)(ru))? dx dt
0 0

and as the first factor can be bootstrapped, (2.6) follows upon taking a supremum in
t €[0,T].

While we will not directly use the next lemma, which indicates the form of the

lower order bound with decay int — » and 0 < p < 1, we include it for the sake of
completeness.

Lemma 2.4 Let0 < p < 1. Supposeu € cL(o, T]XR3)andthatf0reveryt e [0, T],
lu(t, x)| - 0as |x| — oo. Then

T
//rp_zai,(t —r)e U2 qx dr
0

+ sup /rpflal’](t—r) —ou (=2 (¢, x) dx
1€[0,T]

§/rpflal//(—r)ef‘w(*r)uz(o,x) dx

T
+ / / P20 (t —r)e—f’U<’—’>[(a, +8r)(ru)]2dx dr. 2.7
0

Proof We argue similarly to the preceding lemma and apply integration by parts and
the Schwarz inequality to observe that

t
/ [rp_za{](r — e U2 dx dr
0

1
+ - P ol (t = r)e VY2 (1, x) dx

f// B + 3)[rP o, (x — r)e T (ru)? dr dwde

~|—1— rPl ot —r)e” out=ry2 (¢, x) dx

1

—1 r”_la[’](—r)e_”U(_’)uz(O,x) dx
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— /// ol’](t —1)e VT (3, + 8,) (ru) dr dw dt
T
0

< /rp_lcr(/](—r)e_‘w(_r)uz(o, x)dx

¢
/ /rp_2o(/](t — e U2 dx dr
0

t
/ / rP 2oy (x —)e (3, + 0,) (rw)] dx dr

2

1

2

We may then bootstrap the first factor of the last term and take a supremum in ¢ to
complete the argument.

We shall need the analog of the above when p = 1, which comes with a logarithmic
loss. It is this logarithm that is largely responsible for the difference between (1.6) and
the exp(c/¢) lifespan of [11].

Lemma 2.5 Suppose u € C1([0, T1x R>) and that for everyt € [0, T1, |u(t, x)| — 0
as |x| — oo. Then

/fﬁ>2( ) ))zau(f —r)e vy dx dr

U(t—r)e v =)y, 2(1, x) dx

+ sup /ﬁ>z()

tel0,T]

5/10g< )O‘U( r)e” ou(=7) 2(O x)dx
T
—1 —oy(t—r) 2 2
+ [ | ol = ryeov [(a,+a,)(m)] dxdr + lu]? ;. (2.8)
0
Proof We observe that

f/ﬂ>2( ) —— )2 oy (t — e V2 dx dt

ol (t —r)e VT2 (1, x) dx
g

+/ﬂ>2(r)
logr
t o0
=f//ﬁ>z(r)(8f +8r)[—$ag,(r —r)e*"U“*”](ru)zdr dwdr
0s20
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+ / paa)

—2/// /3>2(7’) UU(T—V)E ou(T= ”(ru)(i);—i—ar)(ru)drda)dr

al// (t —r)e V21, x) dx

/,3>2(V) aU( re U y2(0, x) dx

//:3>2(") UU(T—F)e v, 2 4x dr.

As supp B, C [2,4], the last term is bounded by [l ]| %
shows that the first term in the right side is

7 g1~ The Schwarz inequality

1/2

//5>2() o) ol (t —r)e vy dx dt

1/2

/ / Boa(r)r ol (r — r)e“’”“‘”[(&t + 8,)(ru)]2 dx dr
0

The first factor may be bootstrapped, and upon taking a supremum over ¢ € [0, T],
the proof is complete.

The following corollary combines (2.3), (2.6), and (2.7) when p = 1 with (1.10)
and provides the primary linear estimate that our proof is based upon.

Corollary 2.6 Fix N € N. Suppose that h satisfies (2.1), that u € C2([0, T] x R3),
and that for all t € [0, T), |r 8<1Z<Nu(t x)| = Oas |x| = oc. Then,

1 _1 _
||(V)Zaz u||LooL2+“r 2Z u||LooL2+”aZ<Nu”L2L2+”r IZ u”LZLZ

1 1
+sup (I =2t = )73 @+ ) Z=N )32,
U=>1

_1 _ _1
3 dogr) e =) 2N ulZ, ) )

|Z=N

Z,
J)dx
r

SUHenD Z Va0, I+ s [ rbloz= (102l +
t€[0,T]

t
+sup sup ‘//e_"U(’_’)thfNu . (8; + Z)r)(erNu)dxdt‘
U>11€[0,T]

// |ah|+ |az<Nu||<a,+a,)(rZ )| dx dt
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1Z="ul

T
z
+//|h||azf’”u|(|y/zf“’u|+ ! )dxdz
0

T
+//|h|<t—r)—‘|azf’vu||(a,+a,)(rszu)|dxdt
0

T
h
+f/r(|(af +0.)h| + u)|aszu|2c1xc1z
r
0
HIOZ=NulF o2 + 125N ull3 1 (2.9

Proof Using (2.6) and (2.8), we may adapt (2.3) with p = 1 to the bound

1 _1 _
12 gZ=Nul? o o+ 12 Z5Nul3 o + 172Nl + Ik 25N )25,
1 1
Hrm 2ot =)@ + ) Z=N w13,
1 1
+lr~ 2 Aog((r) " o (6 — )2 25N ul|72) s

Z=N
STz N0, 1%+ sup [ ringaz= (2 + ) ax
te[0,T]

+ sup ’// —out-n, z=N ~<8,+8,>(rZ§Nu)dxdt’
tel0,T]

// |8h|+ |az<Nu||(a,+a)(rz w)| dx dr

z=N
//|h||8Z |WZ<N 4] ”')dxdz
r

+f/|h|o;,(r—r)|azf’vu||(a,+a,)(rz§Nu)|dxdt
0

T
h
+//r(|(8t+8,)h| + |r—|)|azf’vu|2dxdt
0
HIOZ=N oo 2 + 125N ull] - (2.10)

We note that

1
ot —r)2 onXy, and o[t —r)S n provided U > 1.

1
(t —r) ~t—

Using these facts in (2.10) and subsequently taking a supremum in U yields (2.9).
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This last Hardy-type inequality is not strictly necessary. When we set up an iteration
to solve (1.1), this will be a convenience when showing that the sequence converges.
In particular, it will allow us to focus only on energy and integrated local energy spaces
for this portion of the argument. A closely related calculation appears in [11].

Lemma 2.7 Suppose that u € C'([0, T x R?) is supported where {r < t + 2}. Then

1

! 2 ; 2 / 2
/(1+r)(t—r~|—3)2u dxg/(wr)rz” Qo | gy O dx
@.11)

Proof Fort € [0, T] fixed, we integrate by parts and apply the Schwarz inequality to
obtain

o0
1 2.4 -1 r? 2
[ ammeramies= [ fota-reoiginiara
& 0
1 2
:—/ . all u? dx
t—r+3 r(14+r)?
1
—2/—ua,udx
A+n0—r+3)
1 1
< 2dx)?
N(/(l+r)(t—r+3)2u x)
1

1 1
X [(/ ﬁuzd)o2 + (/ a j_r)(aru)zdx)z].

Dividing both sides by the first factor in the right completes the proof.

3 Sobolev Estimates

The main decay estimate that we shall rely upon is a space-time variant of the
Klainerman—Sobolev estimate [8] that was established in [19] and is particularly well
adapted to integrated local energy estimates.

As is described in Sect. 1.1, we will break space—time up into CX and CV regions
where T € [0,T]and 1 < R,U < t/4. On these regions, we have the following
weighted Sobolev estimates, which will serve as our source of decay.

Lemma3.1 Foranyt > land 1 < R,U < t/4, we have

1 . 1
lwll oo poocry S ——51Z= Wl 21200y + ,—R]||(a, + 025wl a0 k)
2 T T2 R2 t

T2R
3.1
1
lwlgoorocry S —— 125wl 2p0 vy + 1@ + 3)CZZ W) 21060
t2U2 i 202 T
3.2)
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1
llwll ;S

1
5 z=hwl| s =@+ ) 25w
LeL>(CY) ) T

=l e (3.3)

T
L2L2(C?)

See [19, Lemma 3.8]. The proof of (3.1) follows by changing coordinates to t = ¢,
r = ¢**P and applying Sobolev embeddings in @ and the Fundamental Theorem of
Calculus in s and p. In fact, this yields

<3
”w”LOOLOO(Cf) 5 I%R% ”Z_ w”Lsz(éf)
| RN 3 12
A N0l e 0 S gy B

for any R > 1. In order to get additional decay out of differentiated terms, such as
those appearing in the last term of (3.4), the preceding work [13] in (1+4)-dimensions
relied upon [19, Lemma 3.11]. As (2.9) provides better control on the good derivatives,
we can argue more simply and instead use

2 t+r
S — = r(8, + 9,). 3.5

(at - ar) =

t—r

As(t+r)/(t—r)=0O(1)on C‘f with R < 7/4, (3.1) follows immediately. Replacing
w by B-¢/2(t —r)w in (3.4) and using that S(B~/2(t —r)) = O(1), (3.3) is obtained
similarly.

When U = 1, the other estimate (3.2) is an immediate corollary of (3.4) as we need
only consider 9, as a vector field. When U > 1,

1

”w”LmLO"(C%/) S 31 ||ZS3w||L2L2(éU) + _g”aZS w”Lsz(CU) (36)
12U i 72 ’

follows from arguments similar to the above in coordinates t +r = e*,t —r = &*7,
Subsequently applying (3.5) yields (3.2).
It will also be helpful to have the following common weighted Sobolev estimate of

[9].
Lemma 3.2 Provided that h € C®(R?),
hllzsoag) S RTNZ=2h1 05, 3.7)

For R = 1, standard Sobolev embeddings yield the result. And for R > 1, after
localizing, one only needs to apply Sobolev embeddings in (r, w). The decay is then
a consequence of converting the volume element dr dw to dx = r* dr dw.
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4 Proof of Theorem 1.1
We shall solve (1.1) via iteration. We set g = 0, and for k > 1, let u; solve

1, I,
D“lﬁ = aﬁﬁul{—laauf—l + bjgﬁawulf—laﬁ”f—l + Ajgﬁuf—lawaﬂulf
+BY o, uK 0, 0uf, 4.1)
uk(oa ):fv al‘uk(ov')zg

Note that the right side of the equation is F/ (uz_1, uy_y, uy). We will show that the
sequence (i) converges. The limit of this sequence is the desired solution.

We shall work with N = 60, though this is far from sharp. In the r”-weighted
estimates, we use p = 1 throughout.

To show that the sequence is convergent, we first show a certain boundedness.
Relying on that, we next demonstrate that the sequence is Cauchy, which due to
completeness of the spaces we are working in, finishes the proof.

4.1 Boundedness
For any fixed T < T, we set

60 60 60
M =110Z=%ugllpoor2 + 1 Z5%urll g1 + 19 Z=u) 212
—1--<60 1 60 —1.,<60
Hr = Z= %l 22 + 1) 2 9Z5%upl o2 + 172 Z5Pup || oo 2

1 _1
+Sup ||r_2(t—r) 2(8[ +3r)(rZ§6Ouk)||L2L2(XU)
U

_1 _ _1
+sup r~2(log(r) "Nt — 1) 2 Z5Pu |l 12120k,
U

1 2-1
2 2
X X 102wl poeg,)  + [ 2 (RIFIZ il iz ) ]
t<T R<t/2 T t<T R<t/2
1
U2 241
+sup 3 (- —— 107wl 2y ) |
U Srsay T2 log(t) i
11
Uzt2 211
+s3p[z <1og<r> : aaz£40”""L2L2<é£f>> ] ' (4.2)

t>4U

We call these terms Iy, Iy, ..., X I, X1 yrespectively. We shall argue inductively
to show that

My < 2Coe 4.3)

for a uniform constant Cy provided that T < T,. Indeed, for a universal constant Cy,
we shall show that
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M} < (Coe)? + C(log(T))>ME_ | My + Clog(T))> My_1 M} + C(log(T))* M},
+Clog(T))>M}_ M} + C(log(T)) M} + C(log(T))’M}_ M.  (4.4)

From this, it follows that M; < Cpe. Then by the inductive hypothesis and (1.6),
provided that ¢ and ¢ are sufficiently small (compared to Cp), we obtain (4.3).

We briefly summarize the proof of (4.4) that is to follow. Note that terms I; and I I
are bounded using the energy and integrated local energy estimate (2.2), while terms
111, ..., VIII represent the left side of (2.9). These eight terms are the principal
portions. To prove (4.4), upon applying (2.2) and (2.9), the product rule will guarantee
that one factor from each nonlinear term will be lower order (in terms of the number
of vector fields). As this factor can afford additional vector fields, we may apply our
decay estimates (3.1), (3.2), (3.3), or (3.7) to it.

Closing the argument requires that we obtain additional decay from the derivative
that must be present on at least one factor of every nonlinear term. When this derivative
is a “good” derivative ¢, this is relatively simple as the r”-weight allows it to be
bounded with a larger weight, which effectively provides additional decay to be used
for the other factors. For the 9, — 9, directions, provided that the factor can admit
an additional vector field (3.5) yields additional decay. Here the decay is in t — r,
and the use of the ghost weight allows our estimates to take advantage of this. Terms
I Xy, ..., XII; of (4.2) are commonly occurring factors where such a procedure is
utilized.

The resulting worst nonlinear term is when u_1(9; — 9,)Z 560uk_1 occurs within
the right side of (2.9). Here one integrates (d; — d,) by parts. When it lands on the
lower order factor, the procedure based in (3.5) described above can be used. When it
instead lands on the multiplier term, up to better behaved terms, [uy is reproduced.
This term is replaced using the nonlinear equation, and quartic interactions result.
The majority of the terms can be handled as above and the worst case is again the
uyp_1(0;—0,)Z =60y, interactions. At this point, however, the two high-order factors
can be combined using the chain rule wdw = Jdw?, and integration by parts can be
used to move the derivative to the lower order factors where (3.5) can once again be
applied.

We note that the extra logarithmic factor in term V111 is largely responsible for
our lifespan being exp(c/e%) rather than exp(c/¢) as is known for scalar equations.

In our applications of (2.2) and (2.9), we set

I, 1, 1,
WP = AUl B g,k | (4.5)

We proceed with establishing the necessary bound for each of Iy, ..., XI1y.
[Ix + Ilx; : We begin by showing

5 5
I} 4 117 < (Coe)?* + (log(T)2 My_1 M} + (log(T))2 M} M. (4.6)
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Using (2.2) and (1.5), we have that

|Z<6O

2+ 112 §C§s2+C//|th<60u 1(102=%us] + uk')dxdt
9=! z=60
+C// 190= gy + 10—t <;‘>" 1|)|82560uk|<|82560uk|~|—|r—uk|)dxdt.
@.7)

We first note that we may apply (3.7) and the finite speed of propagation to see that
the last term in the right of (4.7) is bounded by

<60

T
. < 7=
3 2—f||r—1(ra)f‘zf3uk,1||LwL2//|32560uk|(|az—6°uk|+7| ”"')dxdt.
r

0= <log(T) 0 A,
The Schwarz inequality and a Hardy inequality then give that

60

7=
// 1995w, |+| (”>" 1|)|82560uk|(|8Z560uk|+ﬂ)dxdl
r r

S 107 w2 (log(TIZ=ue 1)
< et (log(T) 1), (4.8)

which is controlled by the right side of (4.6).
To address the second term in the right side of (4.7), we note that

1052=%ug] 5 (1025 w1+ 1025 i) 9! 250wy |

HZ= g 1(1025 Py | + 102V )). 4.9)
We first write

Z§6O
—“"') dx dr
.

T
//thZS60uk|<|azfﬁouk|+ |
< Z > //IDhZ 6Oukl 19Z=%0u, |+| |)dxdt

t<T R<t/2

760,

') dx dt) (4.10)

+ Y f/|th<6°uk| |8Z<60u |+I

U<t/4
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By (3.1) and (3.3), we have

<60

z
f /(|azf3°uk_1| + |azf3‘uk|)|af‘zfﬁouk_1|(|azfﬁouk| + ﬂ) dx dr
p

cx
< (1025 k1122 ey + 10255kl 220,
FRIFOZ= Bl 220y + RIFIZ=uill 22 o))

< [1(r) ™1 0=" Z=0up 12 2oy 17 T @25 ur, T 250w |22 o).

Noting, for example, that

-1 2 —J —j 2 2
1) 1025 %u )3 = Y27 (2771025 %ul 12 1) S 125001 .
J

we thus have

Z§60
2 2. // (192011 + 1075 el )10=! 211 (12 uid + 2 aear

t<T R<t/2
< (ka_l X+ Xpo + Xk) <1Vk_1 + IIk_1>IIk. 4.11)
Similarly,
ZS6O
f / |zf3‘uk_1|(|azfﬁouk_1| + |azfﬁouk|) (|azfﬁouk| + ﬂ) dx dr
r
cf

-1 35 34
S <||r Z§ uk_l”Lsz(é{") + ”aZS uk_1||L2L2(65))
1
<|1(r) 2 QZ= g, r = Z50up) |l 212y

_1 _1
x (1) 7025wl 22y + 102025Vl 212y )-

Since the initial data are supported in {|x| < 2}, we get

_1 2 —j 2
1072025l = D0 27 1I0Z5 Ul 0 7ya, )
JjSlog(T)

< log(T) || 2= (4.12)

u”LEl'
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It follows that

ZSGO
oy // 12530y 1| |8Z<60uk_1|+|BZ§60uk|)<|BZS6Ouk|+lriukl)dxdt

t<T R<t/2

S (1Vier + 110 ) - T Qog(T) 3 (Thiey + 11 (4.13)

By (3.2),

<60

z
//<|82530uk_1| + |azf3‘uk|)|aflzfﬁouk_1|(|azf6°uk| T ﬂ) dx dr
r

c
< = (1925 w22 e, + 1025l 22 e,
T2
+IPOZ= w22y + 7 %2534”k||L2L2(éy))

_ _1 _1 _
"r) 2051 250 2 p2cvy 107 T2 QZ5Pur, 1 250w | 212 vy

Thus, using (4.12),

> // (107511 +107= i)

t<T U<t/4
Z_
x|351Z560uk_1|(|3Z560uk| A i )dxdr
r
< log(T) (xzk_1 F XL+ XTIy + Xllk) <log(T)VIIIk_1 + (1og<T>)%11k_1)
x((log(T))%uk). (4.14)
Relying on (3.2) again, we have

<60

Z="u
f/|zf31uk,1|(|azfﬁouk,1|+|azf6°uk|)(|azféouk|+M) dx dr
r
cv
1
ST (1255511 g2 ey + 100+ 0D Z= D)l 2260 )
272
_1
x (1P 7202 1l 20200, + 102025 %kl 212 cp) )

xI(r) "2 OZ" g, r Z5Cup) | 212 vy
Upon using (4.12), it follows that
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ZSGO
Z Z //|ZS31uk,1|(|8256‘)uk,1|+|82560uk|>(\8256°uk|+‘ | l”"')dxdt
X

t<T U<t/4 C%’

< (log(TYV 1Tkt + VTt ) (0g(T) Tt + (log(T) 11 ) ((og(T)* 11t).
4.15)

By plugging bounds (4.8), (4.11), (4.13), (4.14), (4.15) into (4.7) and(4.10) we
obtain the desired bound (4.6).

[IIIy + IV + Vi + VI + VIIg + VIIIy: Here, relying on (2.9), we show that

I+ IVE+VE+VIZ+ VI + VI < (Coe)?
+C(log(T))* M1 M + C(log(T))* M7_, My
+C(log(T))’ M| + Clog(T))> M} _| M. (4.16)

The first term in the right of (2.9) is bounded by Cges2 due to (1.5). We will proceed,
in order, to showing that each of the terms, other than the (1, Z=%0u;, term, in the right
side of (2.9) are bounded by

Clog(T)3<M,§71Mk + Mk_lM,f). 4.17)

We will argue separately that the (1, Z=%y; term is bounded by the right side of

(4.16), which will establish the desired bound.

To control the second term in the right side of (2.9), we will consider the integral
at an arbitrary ¢+ € [0, T], and we fix a dyadic value t so that t € [r,27]. For
1 < R < t/2, we can apply (3.1) and (3.3) and a Hardy inequality (after expanding
the range of integration of the norm of r~!|Z =60 | from Ag to R3) to see

7=60y

| k|>dx
r

< R71 ZSS - ZS4 N

~ Il uk_l”Lsz(Cf) + ”57 uk—IHLZLZ(Cf)

10Z=Cur(t, I 12 10Z=Cukll oo 2.

/ r|afluk_1||azf6°uk|(|azfﬁouk|+
AR

And hence, using the Schwarz inequality,

<1 <60 <60 | Z=60u,|
sup > [ rl0= w1922 uk|(|8Z— ukl—i-—)dx
t€l0,T] RST/ZAR r

< (IVk_1 i 111k_1>1,§,
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which is dominated by (4.17). For the remainder of this term, (3.2) and a Hardy
inequality show that

| <60

Z
> 0= 111020 (10250 + 24 g
r

ISU<t/4, Moy

1 1
Ssup( I 1||Zf4uk_1||L2Lz(@U)+ﬁn(at+ar><rzf3uk_1>||Lsz(@u))
U ‘1202 v 202 v

x[8Z=Pug(t, )13

The supremum of this is bounded by

(log(T)VIIkal + Vuk,])l,f.

Thus,
fo)()
sup /nafluk,]||azf"°uk|(|azf6°uk| + ﬂ) dx
1€[0,T] r
< (Ivk_1 Ty +log(T)VIT Lt + Vllk_l)l,f. (4.18)

We proceed to showing that

t
sup sup ‘//e_"’/(’_r)DhZSka . (8, + 8r)(rZ56Ouk)dx dt’
vzlieo11)

< (og(T))* (M My + Mi—1 M7 )

+(log(T))’ M{_; + (log(T))> M{_, M. (4.19)

Proof of (4.19). The most delicate terms in this analysis are those of the form uy_1(9; —
8,)Z=%u;_,. Here we have a bad derivative occurring at the highest regularity, and
thus there is not room to apply, for example, (3.5) directly in order to get additional
decay.

We begin by examining the other terms. To this end, we set @ = (1, —x/r) and
note that

0, 2=%u] — a§’1‘;wau,{71(8t —9,)Z=%0K |
SN2 19 Z5Pup1 | + 1025 0uy 1 110=" Z=Cuy |
HZ= 0w 11025 ug—1] + 1025 ug 851 Z=Vug |
+10=1 2530, 1110225 uy . (4.20)
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Using (3.1), (3.2), and (3.3) gives us that
[ [ iz w5z (1925 + 12w axar
ct
< (R—1 1 2= w1l 2 g2y + 19 Z= 2y ||L2L2@)) 19Z=ur 1l 212(cry
x(192=Cuell 212y + 1r ™ 250l 2ren)-
and, respectively,
[ [ 1z 5z (1927 P+ 17 25O ax
cv
S (125wl ooy + — 10+ 0 ZZ )l
~ U%f% k—1 LZLZ(CE) U%T% t r k—1 LZLZ(Cy)
<19Z=Pur 1l 220y

-1
x(192=Cugl 2 2co, + 1r' 25%uell 22w )-

Upon summing over R < 1/2,U <t/4andt < T, we get

T
| [z gz (12 + 120 ) dxar
0

SUVey+ 1L +1og{T)VIIL+VIL_ DI (I + 1Vy).
4.21)

Another application of (3.1) and (3.3) gives

/ / r19Z50u, 111051 250, | <| JZ50y, | 4+ 7! |zf6°uk|) dx d
CR

S (||azf34uk71 202y + RIFIZ=F gy ||L2Lz@))

—1 <1 <60
RT8="Z=%ur—1ll 212 (cry

-1
X (” aZSa)I/tk ”LZLZ(C{?) + ||r Z560Mk||L2L2(C11_Q)).

Similarly, using (3.2), we get

/ f |azf3°uk_1||aflzf6°uk_1|(|<at + ar>(rzf6°uk>|) dx dr
cv
1

v: 11
< ( T 10Z=3*uz_ l2r2e0) + U222 + 3)Z=3uy_ ||L2Lz<5y)>
T2
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1

1 1

U2t2

X

<1 ,<60
10="Z= uk—1ll212(cv)

1 -
X —— 110 + 9. (r Z=Pu) | 12 2cv)-

U % T2
Upon summing, these give

T
/ / 10Z=Fug 111951 Z=Cuy 1113, + 8,)(r Z=%uy)| dx dt

0
S UXk—1t + Xe—1)U L1 + IVi—) LT I + T Vi)

+(10g(T))2(XIk_1 + XIIk_l) ((1og<T))%11k_1 + log(T)VIIIk_l) VII,.
(4.22)

Following the same argument, we also obtain

T
/ f 19253 g 1951 250y 113y + 8, (rZ=0ug) | dx dr
0

SUXk+X)U Ly + IV DU T + TVY)
+(1og(T))2(XIk + XIIk) ((log(T))%IIk_l + 10g(T>VIIIk_1)VIIk.
(4.23)

We now apply both (3.5) and (3.1) (and (3.3)) to see that
/ f 1Z=0u 1 11025 uk 1113, + 8,) (r Z=Pup) | dx dt
CR
1
S (12502 + 1922wl 22 ey )
1
(17 P uerllzraes) + 172wl 2pcp)

1
X (|| aZS(’OukHLZLZ(QR) + EHZSéoukHHLZ(Cf)),

while (3.5) and (3.2) give

/ f 1Z=3% 1110 2= w1 1B + 8,) (r Z=%uy) | dx dt
cv

<

~

U

<||Z§34Mk—l ||L2L2(C~’£/) + 10 + 8r)(rZ§33uk_1)||L2L2(C-£/))

ST .
D=

T
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<|IZS60uk_1 lz2r2cvy + 100 + 3r)(r2560”k—1)”LZLZ(C%/))

X T

U% T2
1 + 8:) (r Z=Pw) |2 12cv)-

X 1 1
U2t

(S]]
[NT]

Upon summation, this gives

T
/ / 1250119 Z5%%ug 1 13 + ) (- Z=ug) | dx dr

0
S Vit + TTLo)* (T + TVE)

2
+10g(T)<log(T)VIIIk_1 + v11k_1) VIL. (4.24)

Very similar arguments give
/ / 1851 Z=0u 1118 Z=ug 1@y + 8,) (rZ=uy)| dx dt

cx
L z=3 34
S (25wl 2z + 192550 o)

1
x (1025wl 2 2cmy +19Z5ul 22 cp) )
“(

1
|| aZS6OMk ”LZLZ(CIR) + E ”ZSGOMk ”LZLZ(C.(R))

and
/ / 1051 250 11102 2= ug|| By + 8,) (r Z=%up)| dx dt
cv
ST (Ilzf”uk_lanLz(@U) + 16 + a»(rzf”uk_l)||L2L2(@U))
[]2_[2 T T
1 < <
x—— (1075wl 22 ey + 100 + 90 Z=Cu)l 221
U212
1
X ——710: + 9 (rZ=Pu) | 2 12cv),
U212
which yield
T

/ f 19=1 Z=0u, 11182 Z=%u |13, + 8,)(r Z=%uy)| dx dr

0
S UVier + H ) U e + HTT) T T+ 1Vi)

+(10g(T)VIIIk_1 + VIIk_1><IIk + log(T)VIIk)VIIk. (4.25)
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As the right sides of (4.21), (4.22), (4.23), (4.24), and (4.25) are bounded by (4.17),
to complete the bound (4.19), we need only examine

sup sup )// —ou =L ui (3 — 3) Z=Ouf (8 + 8,)(rZ=Cul) dx dt|.
U>11€[0,T] ;

The argument that we shall use here is reminiscent of normal forms.
We first integrate by parts to see that

//e—av<’—’>a§)‘;‘wau,{_l(a,—ar)zf@u,f_l(a,+a,)(rz<60 Iy dx dr
:/e o) g8 qui_ Z=OuK | (8, + 8,)(rz=%u I)dx

+2// vt g ui_  Z=0uk (3, + 8,)(rz=Cu}) dx dr
+2//a{,(t—r)e v g! % ol Z=0uk @, +8,)(rz=%ul) dx dr
/[ —oU =) g1 oy (8 — 8 )ui_ Z=0uK | (8 + 8,)(rZ2=Pu)) dx dr

t
—// ~ov gl wqul_ Z=0uf (0} — 91 (rz=Puf)dxdr.  (4.26)

We shall proceed through arguments that will bound each term in (4.26).
For ¢ fixed and T = f, we may apply (3.1), (3.3), and the Schwarz inequality to see
that

3 /rm Z= Oy (1970 + 125 ) dx

R=t/24,
—1,<4 3 -1 7<60
S (' 25wl g + 1975w 22 ) 12 250, )l 2

x (1072 9Z=Cui(a, llge + 172 25%ug (e, )l 2).

Using (3.2), we instead get

[ ez (1927 P+ 17 25O )
Vs 1=r)~U
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S sup| (12522 + 16+ 0025w Dl ) |

U212

—1 <60
xlr=2 2=y 1, )2

1
% (1292 Puite, Ol + 1r 325 Cuer, )l 2).

As such,

sup sup ’f o0 t=n gl il Z=O0uK (3, + 8,)(rZ=0 I)dx‘ |
U te[0,T]

< (IVk_l Iy +log(T)VIT Ty + VIIk_l)VIk_l(Vk TV,
(4.27)

For the second term in the right of (4.26), provided R < t/2, we may apply (3.1)
or (3.3) to see that

[ [ etz =1 (192 + 125 axar
cx

—1 <4 <3 —1-<60
S (I 2% o + 1975501 g ) I 2P g

< (1925 ull 22+ 1r™ 250l 22 ) (4.28)

and for U < /4, (3.2) gives

/ / . r N1 11Z5%Puge 1113 + 8,) (r Z=%uy)| dx dr
C‘E

1 1
S (;nzf“uk_l l2r2yy + 1@+ ar>(rzf3uk_1>||LzL2(@g))
1
x— ||zf6°uk_1 220

1
x—— 10 + 9. (r Z=Pw) | 12 12cv)- (4.29)

1
Uzt2

Upon summing, this results in

f f r g1 112501113 4 8,) (r Z=%uy)| dx dr
S UV + H G )IVi (I + TV + VIR, (4.30)

which suffices for the bound in the supremum (in both 7 and U) of the second term in
the right side of (4.26).
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Similar to (4.29), we estimate

1
f / 5|uk_1||zfﬁ°uk_1||(af +8,)(rZ=%uy)| dx dt
cv

1 1
= ( i CANTS 2020y + —— 113 + ar)(rZ§3uk—l)||L2L2((:'U))
202 ! 7202 T

<60
X7 1Z= uk—1||L2L2(cgl)

202
1
X IG YrZ=0u) 22y
212
Since

1 1
ab(t—r)i—oan, al/j(t—r)gvoan,
T

we may combine this with (4.28) to see that

f / o4yt = Pt 11251 1)@y + 8, (rZ=ug)] dx di

SUVk1 + L )IVe (T + 1Vy)
+(10g(T))2<10g(T)VIIIk_1 + v11k_1)v111k_1v11k, 4.31)

which provides the appropriate bound for the supremums of the third term in (4.26).
As (4.22) suffices to bound the fourth term in the right side of (4.26), it remains to
consider

// ~ou gl g Z=0uf (97 — 92 (rZ=Pu)) dx dr
0
t
=/fe_GU(t_r)aﬁ‘I?a)au,{_lZ§60u,§_1W- W(rZ<60 I)dx dt
-i—//re*”U(t r)agl‘ga)auk 1Z<60 lhl ﬁya 9y 7=60y, dedt

+/f —oua=n gl ol | 750K 0, =0y dx dr. (432)
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For the first term in the right, we integrate by parts and use (1.8) to see that

t
sup. sup ‘[/e‘“’f("’)aj',?wau,{_lZf6°u,§,1W-y/(rzfﬁou,{)dxdt
U ,T

ref ]0

T

< f / 1Z= g1 11251 || W Z2=Cuy | dx dr
0

T
+/fr|uk71|wzf6°uk71||>vzfﬁ°uk|dx dar.
0

The preceding bound (4.21) shows that the latter term is controlled by (4.17). And
(3.1) (and (3.3)) and (3.2), respectively, give

| [ 12 iz 1w 2= O g e
cx
< (I 250 2 emy + 1925w 22 )
llr ' Z=0u 1l 2 g2 oy 1925 unll 22y
and

/ / 1Z= 111 Z2=u 1 || ¥ 2=Cuy | dx dr
cv

! 1
S ( I ”ZSSuk_l”LzLZ(éU) + = 1@ + 8r)(’"Z§4Mk—1)||L2L2(CU)>
Uzr2 ' U2r2 4
X||7712560Mk_1||L2L2(C£/)|| aZS6ouk”L2L2(C£/).

Hence,

T

/ / 1Z= - 1125 | 9 2= dx i
0
SUVi—1+ 1y +1og{TYVIIL—y + VI_)IVi_1 111,

which shows that

t
sup sup ‘/fe‘”U("’)a},‘?wau,{_lZf6°u,§,1W-W(rzfﬁou,{)dx dr
U te[0,T] 0

< log(T)M; | M. (4.33)
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Another integration by parts gives
sup sup )//re oulr= ’)all‘?a)auk_lZfﬁou,{ilh?ﬂyaﬁa),Z%O Tdx dr
U t€[0,T]

< sup /r|af‘uk_1|2|zfﬁ°uk_1||azf“’uk|dx
t€[0,T]

T
4 / f 9= 112125y 10 2=y | dx di

+// L 10 1 PIZ5Oug 1110 2| dx dt

(t—r)

+//r|af‘uk_1||aaf‘uk_1||Zfﬁ°uk_1||azf“’uk|dx dr
+//r|afluk_1|2|azf6°uk_1||azf6°uk|dx dr. (4.34)

If we argue precisely as in (4.27), we see that

sup /r|afluk_1|2|zfﬁouk_1||azf6°uk|dx
t€[0,7T]

S (IVier + 1Dy +10g(T)V I Iy + VI i)

1
VIt 1) 2105 a1 110 Z=Pug ||| oo 2.
Subsequently applying (3.7) gives that
1 _1
1) 2 10= k1 110 Z=Cuk || oo 2 S M2 2521 | oo 12 10 Z= Pt || oo 2.

And hence,

sup /r|afluk_1|2|zfﬁouk_1||azf6°uk|dx
te(0,7T]

< (IV,H Loy +10g(T)V I Ty + Vllk,l)wk,lwk,llk.
(4.35)
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For the remaining terms in (4.34), we continue to apply (3.1), (3.2), and (3.3)
repeatedly. These give

/ / 0= 112125 11025y | dx di

2
< (I 25522 emy + 1975 w1 2oy )

1 1
—1 <60 —5 <60
X”I" Z_ Mk_1||L2L2(C11_Q)—RI ”}’ 282_ uk”Lsz(C{")
2

and

//|afluk_1|2|zfﬁ°uk_1||azf6°uk|dxdt

(1 1 <4 2
< (U”% 1255 1||L2L2(CU)+Fn@wn(ﬂ— w2 )

x|lr 1250 )12,z Cly ||r 2975 uk||L2Lz(Cy).
Similarly,

[]+

1 1 2
§( 1255w + @ + 925D 22w )
Uzté L2L2(CU) U -L—i t L2L2(CU)

|a— u—11%1Z2=ur 1110 2=uy| dx dr

—1,.—% »<60 —1a,<60
U ||r 27= Mk_1||L2L2(C1L_/)||r 28Z— uk”LZLZ(Cf_/)'

These combine to give

T
/f 10= 51121 25wy 1118 2=%uy | dx dr

Y1 P1Z50u, 21110 25wy | dox dt
CU
S UVier + T L) TV T + (log{TYVIT iy + VI—1)?
x(IVk_lllk +10g(T)VIIIk_1IIk). (4.36)
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By related arguments,
//r|afluk_1||8afluk_1||Zfﬁouk_1||azf“uk|dxdt
CR

-1 5 4 -1 60
S (I 2551y + 197501 22 ) I 2% e,
x (102512 2 ey + RIFOZ= k11220,

_1 _1
R 72025 %ugll 212y

and

//r|afluk71||aafluk71||zf6°uk71||azf“uk|dxdr
CU

[N}

1 1 1
S _( 1Z= w10l 22 e0y + ——1 1@ + 8 Z=* w22 )
P\yirs LALAED) T i r L2L2(CY)
1
2 11
X T_%”azisuk—l||L2Lz(éy) +U2t2 ||aaZS4uk—1||L2L2(é§/))
1
X —— ||Z§60uk_1||L2L2(Cy)—l||8ZS60uk||LzL2(C$/),
Uzt 72

¥
(8]

which gives

T
/fr|afluk_1||aafluk_1||zfﬁ°uk_1||azf6°uk|dxdr
0

S UV + L) X1 + Xe—)I Vi1 1 Iy
+og(TH?Qog(T)VIIIx—1 + VII_1)
X(XIp—1 + X1 L) VII_111. 4.37)

For the last term in (4.34), we get

/ / P10 k1 1210 Z5Puk 1110 250wy | dx dt

cE
< —1255 - Z§4 ~ 2
~ ”r Uk—1 ”LzLZ(Cf) + ” a Uk—1 “Lsz(CIR)

-1 60 -1 60
><||r 28Z§ Mk7]||L2L2(C§)”r 2825 uk”Lsz(Cf)
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/ / r10= w1 1410 Z2=Cug 1110 2=uy | dx dt

1 1 2
g ( 1 ”Z Ug— 1”L2L2(CU) +— 1 1 1(0; + o, )(VZ Ug— l)”LZLZ(CU))
U2'L'2 U T2
x||r_782560uk_1||L2Lz(cy)||r_782— willp212(cv),

yielding

T
/ / F10= k11210 Z=Cu 1110 2=Cuy | dx dt
0

S Vit + I im)* Ty T
+1og(T)og(TYVII Ly + VIL_ )1 111 (4.38)

The combination of (4.35), (4.36), (4.37), and (4.38) then establishes that

sup sup ‘/f “D g S wgul 250 n5 0,052 uj dx dt
U 1€[0,T]

< (log(T))* M_ M. (4.39)

We now turn our attention to

sup sup ‘//re vt g8 qui_ Z=0uk 0, 2=0ul dx dr|.
U t€[0,T]

We shall first show

U te[0,T]

(DhZSa)uk — aj’ka),gukfl(a, — 8r)Z<60u,f 1) dx dt‘
< (log(T))’ M| + (log(T))> M} _ M. (4.40)
By (4.20), we have
U te[O,T]

X (Dhmeu,i — a;."lga)ﬂuk_l(at — 3,)2560u§_1> dx dt‘
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< / / rluk— 11 Z=0u 1 | Z=50use 1 119 Z=Cug—y | dx dr
0
+ / f Pl 112591 10 Z50ug 11951 250y | dx dt
0
+//r|uk_1||Zf6°uk_1||azf3‘uk||af‘Zf6°uk_1|dx dr
0

/ /r|uk_1||zfﬁouk_1 11051 2530, 11102 Z5%uy | dux dt. 4.41)
0

We note that (3.1) and (3.3) give

<60
ek—1t N Z=""ur—1lll 222(cry

—1 <4 <3 —1 <60
S (I 2% g + 1975301 g I 25 % e,

(4.42)
and (3.2) gives
1
pl 111 Z=Pur 1l 22 cvy
2
ST (||Z§4uk—1 226y + 103 + ar)(rZS3uk*1)”L2L2(C~'U))
202 T
X T ||Z§60uk_1 ||L2L2(C1l./)' (443)
Uzt2

Arguing as in (4.21), (4.22), (4.23), and (4.25) where
19Z=Cuill 212 (cr),

1
—— 1@ + 0 Z=Cui) 2120
212

are replaced by (4.42) and (4.43), respectively, we immediately get (4.40)
To complete the proof of (4.19), we now consider

//re“’”(’ r)ajlgwa _1Z560u,§71(a}£a)ﬁu,{_](3, —8,)2560u,§71)dx dr

//re_“U(t r)uk 1“k 100 — )[aJKwaa-’.SwﬁZ<60 K Z<60uk 1]dxdt

@ Springer



La Matematica (2023) 2:37-84 73

Integration by parts shows that

sup sup ‘/f o=yl | 750K |
U 1€[0,T]

<a{?wﬂuk L@ — 8,) 2=, K 1>dxdt’

< sup /V|Uk 1212559, | dx+f/
1€[0,T]

T
+/ f|uk_1|2|zf6°uk_1|2dxdr+/[r|uk_1||auk_1||256°uk_1|2dxdr.
0
0

(4.44)

|Mk 11212=%u; 1| dx dr

For the first term, we first consider a fixed ¢ and set T & ¢. Then by (3.1) (and
(3.3)),

2 7<60 2 < —1-<4 <3 2
r|uk—l| |Z_ uk—ll dx ~ ”r A uk_l”Lsz(étR) + W(Z_ uk—l”LZLZ(C‘TR)
AR

—1.,<60 2
Ir=2 25wy (2, )12,

and by (3.2)

2, <60 2
/ rlug—11°12=" ug—_1|* dx
(t—ry=U

1 2
< (125 gy + 10+ 007 22 o))
U212 U2t

D=

X ||r_7Z_6OMk—1 @, - )||i2({<t—r)%U})'

Upon summing over R < 7/2, U < t/4 and then taking a supremum in 7, we obtain

sup / i1 PIZZ0u 1 P dx < (IViet + T )PV
te[0,T]

+(log(TYVII L1+ VIL_)>VI? . (4.45)

For the second term in the right of (4.44), subsequently applying (3.1) (and (3.3))
and (3.2) when R < 7/2, U < t/4 gives

@ Springer



La Matematica (2023) 2:37-84

74
-
/ / 1171 Z=Cup_ | dx dt
(t—r)
ck
< (' 25wl ey + 1250 1))
~ r Uk—1 LZLZ(Cf) Uk—1 L2L2(C5)
*Nr = Z= 01132 2y (4.46)
and
-
f f lug—1 11 Z=Cup_1 | dx dt
(t—r)
cy
< (L yz= - L@ +00)ez -
~ T 1 I uk*IHLsz(Cy)—i_ﬁ”( ; + 0,)(r uk*l)”Lsz(Cy)
U212 Uz2t2
1 <60 2
X T 1 ”Z Mk_1||L2L2(C_§/) .
U212
Upon summing, we obtain
T
-
// e k112125 %up -1 P dx di S (Vi + THH-) TV
0
2
+(log<T>)3(1og<T>V111k,] + Vuk,l) VIIIZ,. (4.47)
Moreover,
[ [ i1z P axar
cy
< (=L yz= - L@+ a0z -
~ T 1 ” uk_l”Lsz(Cg)—Fﬁ”( ; + ,«)(I" uk—l)”LZLZ(C%/)
U212 212
x[Ir = Z=%u 1172 2 vy

Hence when combined with (4.46), this gives

T
//|uk,1|2|2560uk,1|2dx dt < UViey + T L-)?TVE | + (log(T)VIIIk,l

0
(4.48)

2 2
V) TV
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We may use the estimate on the second term in the right side of (4.41) to bound the
last term in (4.44). Combining this with (4.45), (4.47), and (4.48) then yields

U te[0,T]

(a{‘?wﬂuk [0, — 8,) 2= K. 1>dxdt’

< (log(T)’ M},

which completes the proof of (4.19).

To finish the proof of (4.16), we consider the remainder of the terms in the right
side of (2.9) and show that they are each controlled by (4.17).

By (3.1) and (3.3),

// (192" | ZE ] ")|azf“’uk||<a,+ar>(rzfﬁouk>|dxdr
< (||r—1255uk_1 li2i2emy + 1025wkl 2 2 ory + RIFIZ= iy ||L2L2@))
X||”_laz§60uk||L2L2(cg?)(|| aZSéouk”LZLZ(cg?) + ||r_1ZS6Ouk||L2L2(c5))~

And by (3.2),

/[ |az<1uk_ |+' e l')|azf6°uk||(at+ar><rzf6°uk)|cbcdt

1

Uz

~1,<5 5

S (||r Z=ui Ml 22 coy + 102wl 22 0y
T2

1 1
+U272| aaZS“lfikfl ||L2L2(C~’£/)>

_1 1
— 1n 72025 uill 22 cvy — 1By + 3 P Z=Cu) | 212w
2 Uz2t2

Upon summing over R < t/2, U <t/4andt < T, we get

T
Z="uy_
//(|azf‘uk_1| n M)wzfﬁoukn(a, +0,)(rZ=%0uy)| dx dr
r
0
SUVkr+H X1+ X DI LT + TV
+<1Vk_1 +log(T)X Ir—1 + IOg(T)XIIk_1>IIk VII. (4.49)
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For the fifth term in the right side of (2.9), applying (3.7) and the Schwarz inequality,
we have

T

Z§60
// |35’u,<,1||3256°uk|(|yzf6°uk| + |r7”k|) dxdr
0

—1,=<3 <60 <60 —1 <60
SN 2wl 21025l o2 (1925 Pl 22+ 1 25 P22 )

S IV k(T I + TV). (4.50)

And for the sixth term, using (3.7),

T
/0 /(r — ) 0= w1 110 Z250ug |18 4 8,) (r Z=Puy) | dx dr

_ ~1
S log(T)(sup 1) ™24t = 1) ™2 25w 212, ) 102 Vutk o
U

4.51)

_1 _1 <
x sup(1lr) 70 = 1) TH@, 4+ 00 250w | 22y )
U
< (log(TY?VIIL_y - Iy - VIIL.

For the seventh term in (2.9), we apply (3.1) (and (3.3)), which yields

8_
// B+ 8,)0= up_y| + 10— et 1|)|azf60uk|2dxm
r

s (”azss”k*”LZLZ(é,R) + RIPZ= i lzaeny + ' 2501 g

-1 60, 112
X”(r> 28Z§ Mk”Lsz(C{e)'

On the CY regions, in addition to (3.2), we will also apply (3.6) to the term that already
contains a good derivative, which gives

// 19 + 8,)0= g 1|+| k= 1|)|azf60uk|2dxdt
r

5(U1

71'7

1
1Z=0uk=1ll 2200y + =77 1@ + 3 Z= uk—Dll 220
Uzt2 T

1

Uz
=10 + 00 75 w022 e

T2

x ||<r>—fazf6°uk||im(cy).
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Using (1.9), note that

1

U2
— 106 + 0025 w0 22 )
T
1

2
<_|||8Z Uf— 1||L2L2(CU)+U2T2”a8Z Uk— l”LZLZ(CU)
T2

Thus, upon summing and using (4.12), we obtain

ff 13 + 8,)0= ug— 1|+| r" 1|)|azf6°uk|2dxdt

S UT—1 + Xk—1 + I Vi—1)(log(T ))ﬂlk
+[v11k_1 + (10g(T))<VIIIk_1 F XL+ XIIk_1>] log(T)1 1.
(4.52)

The desired bound (4.16) now follows from (2.9) and the application of (1.5),
(4.18), (4.19), (4.49), (4.50), (4.51), (4.52), and (4.6).
[IXkj: As R < t/2 on each Cf, (3.5) allows us to see that

IXpS Y Y, ( 2||z<5‘uk||L2Lz(CR)+ 1925kl 0igay) S TR+ V2.
t<T R<t/4

(4.53)

And, thus, the appropriate bound is a consequence of (4.16).
[Xk: Using (1.8) and (3.5), when R < t/2, we see that

RIFIZ=url 22 ery S NOZ5H ukl 22,
+RIG + )@ =3 Z0urll 22 cry (454)

S 1025wkl 22y + RIOZ=Cuil 215 ey
On CX, (4.54) is akin to the bounds of [10] and [22]. We note that
025 < (1075w | + 10772 )1 2= g |
HZ=2 11020 + 1075 wl). (455
Applying (3.1), we obtain

4 -1 41
RIZ=*0ul 22 ¢my S RTNZZM il 22 my

&+ RIPIZ=Pupy ||

02 _ )
{ il P
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—1y <41 i <25 <24

FRNZ= w2 (10255, o+ RIFIZS il o)
—1 <25 <24

HRNZ el an 192 o )

% (1075 w1l 22y + 1075 il 22 ) ).
Combining this with (4.54), we see that

Xe SIXk+ 1Vk—1(1Xk—1 + X1 + log(T)(X I —1 + Xllk—1)>
+1Vi (IXk + X + log{T)(X I + XIIk))

+(1Vk71 + Illk,l)(lxk,l n ka). (4.56)
We note that the occurrences of terms X I and X 1 are due to the enlargement of C k
when R = 7/4 and R = t/2. The tails here can be bounded using the C y terms when

U = t/4. By (4.16), these terms are also bounded by the right side of (4.3).
[XIy: For U = 1, we have an immediate bound

1 1
> 1025w, gy S Y g 1025wl e < I
— 7(log(t))? LLNEI=H ™ £~ (log(r))? LELy =k

For U > 1, we can refer to (1.8) and (3.5) to see that

1

2 _1 _1 _
————10Z= ukll 2 2 vy < Ir 2 =) "2 Aogr) T Z5 il 22 )
72 log(Tt) ’ !
_1 _1 <50
Hlr =2 (e =) 720 + 9 ZZ U 22 v
And thus,
XL SLi+VIIL +VIIL. (4.57)

Then (4.6) and (4.16) give the boundedness in terms of the right side of (4.3).
[XII;: Using (1.8), we first note that

Z(l presel L R

1
< <42
Z 7 (log(7))2 (”Z ”k”L2L2 cu=")

1@+ 9 Z= )12, o))

SVIIRR+ VI
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Andfor 1 < U < t/4,(1.8) and (3.5) give

1

1l m U2 41

U2T2||aaz§ Mk”LZLZ(é%/) ,-§J_|||BZS uk”LZLZ(é%/)
T2

11 <40
+ U@+ 0@ — 90250l 20 o,
1

Uz
< —laz="

uk||L2L2 éU
3 (D)

1 1
+ U212 ||DZS4OM]{||L2L2(C"~£/).
Applying (3.2) to the lower order terms of (4.55) gives
11
Uzr2 ||sz4°uk||L2L2(éy)
1
1 Uz
S 175 w2 e (11925 |
U212 T 72 L
+U T2 | §9Z P u |
L

2%
2L2(CT )

U )
2L2(Cr)
1 U2
125 w2y (S 1025l o
Uzt2 TN 12 LZL=(C;)

+UTT 92 |

U )
L2L2(C,)

1
(125w, o + 1@+ 8002
Uit2 L2L2(C,)
1

Uz
X7

U )
L2L2(C,)
(102501121260, + 1025wkl 21260, )

‘L’f T T
From this, it follows that

X1, SVIIL+VIL+ XL+ VI
(IXk—l + X1+ 10g<T><XIk—1 + XIIk—l))

YVIIL, (IXk X+ log(T)(XIk + X11k>)

+(log(T)VIIIk_1 + VIIk_1)<XIk_1 +X1k). (4.58)
The proof of (4.3) is now complete as we can apply (4.16) and (4.57).

4.2 Convergence

We now conclude the proof by showing that the sequence is Cauchy. This is somewhat
simplified by the extremely high regularity that was used in the preceding subsection.
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We set

A = 1025 (ug — w1l oor2 + 12520 (g — w1 (4.59)

and we shall show that for each k,

1
Ap < EAkfl, (4.60)

which suffices to complete the proof.
We use that

Dk — Ougr = ayg g = wl_p)daufy + aygul_sduawf_y —uf y)
+by5 oy = uf )y + by bl 50wl —ufy)
+ATuf i — )+ AT @ — uf oadpui
+B§’1?ﬂya)/”/§713aaﬁ (ul —ui_p) + Bj’lgﬁyay (uf—y — uf—)dadpui_y.
(4.61)
With 4 as in (4.5), we apply (2.2). Arguing as in (4.9), though we need not take as

much care to distinguish the lower order terms from the higher order terms, this gives
that

T
A S f / 1051 Z=20 gy — up_2)|10Z=H up_1 |
0

1Z=20(uy — Mk—1)|)
r

(|azf2°(uk )|+ dx dr
T
- / [ 1951 Z=0ug 2102 (-1 — ug—2)|
0
(|8Z§2O(uk —ug—1)| + 12520 uk_l)') dx dt
; r
+ f / 1051 250y 1925 (g — g )|
0

Z=20 (g — ug—
277 G = ”') dedr.  (4.62)
.

(1922w = )| +

Applying (3.1) and (3.3), we obtain
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[/\af‘zf%m — uk-)OZ=H u—q]|
CR
Z=20(uy — up—
(1972 ]+ T el (”"r 2 l)l)dxdt
< (10255 w1l em, + RIFIZ= sl 2y 6y
_3
1) 72051 2520 1 — )l g2 p2cy
1 1
x(”(rrzazfzo(uk — w0l 22 ey + 107727 250w — uk_l)anLz(cg))
And (3.2) gives
//\aflzf”(ukq — k) Z=H u—q|
CU
Z=20 (up — uy—
<|32520(uk —ur_1)| + |(ukr—ukl)|> dx dr
U% <25 <24
N T(HBZ— uk*l'lLZLZ(Cy) +t||gazZ= uk*IHLQLZ(C‘y))
T2
_ _1
(e =y~ Hr) 7205 250y — ur—2) 22wy
—lo,<20, - 1,<20,
X\ Iy 720 Z= (uk — up—D) Nl p2p2(cvy + )2 Z=7 (upe — w0 Il 22 (cV)y ) -
We may use (2.11) and (4.12) to see that
N B )
It —r) ") 7205 2520 (ui—y — ug—2) Il 212
1
< Qog(TH 21252 (up—1 — ug—2) | L1 -
Thus, upon summing over R < 7/2,U < t/4and v < T, we see that
T
1 2 21
//wi Z=0 gy — up—) 10 Z=* ug |
0
Z=20(u, — uy_
(|azfzo(uk )| 4 1k m)dxdt
r
< (log(T))*My—1 Ag—1 Ag. (4.63)

Applying (3.1) (and (3.3)) and (3.2), respectively, gives

f / 1951 Z=20u 5110252 (u—1 — ug—2)|
CR

|Z=20 (uy —uH)|)
r

(|3252°(uk — )|+ dx dr

—1-<25 <24
< (I 25 w2l 22 ey + 19202 2 26y

@ Springer



82 La Matematica (2023) 2:37-84

_1
1) 72025 (w1 — ur-2) 212y

—1 -1
(1) 20250 ux = win)2g ey + )3 250 — w2z

and

f / 1951 250U 5110 2= (up—1 — ug—2)|
cv

Z=20(uy — up—
| (up — ug m)dxdt
r

(19252 0 = )| +

1
S = (||2525Mk—2||L2L2(C‘U) + 110 + ar)(VZSMMH)||L2L2(€U>>
U212 i '
_1 <20
r) 728 Z=" (uk—1 — wk—2) | 1212V

-1 -1 _
x (1) 720250 i = w22y + 10V 27 2520w = w2 p2c)):

which, using (4.12), imply

T
/ / 19='Z=0u 5110252 (ug—1 — u—2)|
0
Z=2 (up — up—
(I3Z§20(uk—uk_1)|+ | (U — ug 1)|>dxdt
r
< (10g(T))* M2 A—1 Ar. (4.64)

The third term in (4.62) is very much of the same from as the preceding term, and
the exact same arguments yield

T
/ / 1051 Z=0u 11102720 (uie — uge—y)|
0
Z=20(uy — uy—
(|8Z520(uk—uk_1)|+| (b — ”')dmr
r
< (log(T)* M1 A} (4.65)

It now follows from (4.62), (4.63), (4.64), and (4.65) that
AR S (og{T))* (My—1 + My—2) Ax—1 A + (log{T))* My_1 A},
Using (4.3) and (1.6), provided ¢ <« 1, we may bootstrap and obtain
A2 < C48~%A]%_1.
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Thus, for ¢ sufficiently small, we recover (4.60), which implies that the sequence is
Cauchy and thus convergent. This completes the proof.
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