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Abstract
We consider quasilinear wave equations in (1 + 3)-dimensions where the nonlinearity
F(u, u′, u′′) is permitted to depend on the solution rather than just its derivatives.
For scalar equations, if (∂2u F)(0, 0, 0) = 0, almost global existence was established
by Lindblad. We seek to show a related almost global existence result for coupled
systems of such equations. To do so, we will rely upon a variant of the r p-weighted
local energy estimate of Dafermos and Rodnianski that includes a ghost weight akin
to those used by Alinhac. The decay that is needed to close the argument comes from
space–time Klainerman–Sobolev type estimates from the work of Metcalfe, Tataru,
and Tohaneanu.

Keywords Nonlinear · Wave equation · Almost global existence · Local energy
estimate

1 Introduction

In this article, we shall examine long-time existence for systems of (1+3)-dimensional
quasilinear wave equations with small initial data where the nonlinearity is permitted
to depend on the solution rather than just its derivatives. In particular, for� = ∂2t −�,
we shall examine
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{
�uI = F I (u, u′, u′′), (t, x) ∈ R+ × R

3, I = 1, 2, . . . , M,

u(0, · ) = f , ∂t u(0, · ) = g.
(1.1)

Here u = (u1, . . . , uM ). We use the notation u′ = ∂u = (∂t u,∇u) for the space–time
gradient. The smooth function F vanishes to second order at the origin, and it is linear
in the u′′ components. Moreover, we shall assume that

(∂uJ ∂uK F
I )(0, 0, 0) = 0, ∀ I , J , K = 1, 2, . . . , M, (1.2)

which has the effect of disallowing u2-type terms at the quadratic level for F . In [11],
almost global existence, which shows that the lifespan grows exponentially as the size
of the data shrinks, was proved for scalar equations. In the current article, we seek
similar lower bounds on the lifespan for systems.

In the sequel, we use Einstein’s summation convention. Repeated Greek letters
α, β, γ are understood to sum from 0 to 3 where x0 = t . Repeated lower case Roman
letters i, j, k are summed from 1 to 3, and repeated upper case letters I , J , K will be
summed from 1 to M .

For simplicity, we shall truncate the nonlinearity at the quadratic level:

F I (u, u′, u′′) = aI ,α
J K u

J ∂αu
K + bI ,αβ

J K ∂αu
J ∂βu

K

+AI ,αβ
J K uK ∂α∂βu

J + BI ,αβγ

J K ∂γ u
K ∂α∂βu

J . (1.3)

In the small data regime, higher order terms are better behaved. The constants will be
assumed to satisfy the symmetry conditions

AI ,αβ
J K = AI ,βα

J K = AJ ,αβ
I K , BI ,αβγ

J K = BI ,βαγ

J K = BJ ,αβγ

I K . (1.4)

Our main result is the following statement of almost global existence.

Theorem 1.1 Suppose that f , g ∈ (C∞
c (R3))M. Moreover, assume that the smooth

function F vanishes to second order at the origin, satisfies (1.2), and is subject to
the symmetry conditions (1.4). Then, for N ∈ N sufficiently large, there are constants
c, ε0 > 0 so that if

∑
|μ|≤N+1

‖∂μ f ‖L2 +
∑

|μ|≤N

‖∂μg‖L2 ≤ ε (1.5)

with ε < ε0, then (1.1) has a unique solution with u ∈ (C∞([0, Tε] × R
3))M where

Tε = exp(c/ε
1
3 ). (1.6)

To aid the exposition, we have restricted to the case of compactly supported initial
data. Without loss of generality, we shall take

supp f I , supp gI ⊂ {|x | ≤ 2}, ∀ I = 1, 2, . . . , M . (1.7)
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Small data in a sufficiently weighted space would also suffice. In [11], the lower bound
of the lifespan was exp(c/ε). The difference in the lifespan between [11] and Theorem
1.1 is primarily due to a logarithmic loss that occurs as a part of an endpoint Hardy
inequality. See Lemma 2.5. While refinements of our argument to improve the power
in (1.6) are likely possible, it is not clear what the sharp power is.

Equations such as (1.1) with nonlinearity that depends on the solution rather than
just its derivatives do not mesh as simply with the energy methods that are typically
employed to prove long-time existence. In [7], without the hypothesis (1.2), a lower
bound of exp(c/ε) was established in (1 + 4)-dimensions. For scalar equations, the
additional hypothesis (1.2) was, moreover, found to be sufficient to guarantee global
existence for sufficiently small data. The analogous results in (1 + 3)-dimensions
appeared in [11] where the lifespan was shown to exceed c/ε2 without (1.2) and
almost global existence was provided for scalar equations.

In both [7, 11], the restriction to scalar equations is necessitated by the use of the
chain rule to write u · ∂u = 1

2∂u
2 interactions in divergence form. This special form,

in turn, allows for easier estimation of the solution rather than only its derivatives. See,
e.g., [11, Proposition 1.8]. The article [13] extended the result of [7] by establishing
small data global existence for systems (1.1) subject to (1.2) in (1 + 4)-dimensions.
We establish the (1 + 3)-dimensional analog here.

The principle source of decay in our proof is obtained fromspace–timeKlainerman–
Sobolev estimates as were proved in [19]. This will be paired with variants of the
integrated local energy decay estimates. In [2], r p-weighted local energy estimates,
which provide improved bounds on the “good” components of the gradient: ∂t + ∂r
and 
∇ := ∇ − x

r ∂r , were proved. These will be combined with a ghost weight, which
originates from [1]. This permits a further improvement of the bounds in the vicinity of
the light cone and meshes particularly well with the space–time Klainerman–Sobolev
estimates of [19].

While the proof uses the method of invariant vector fields, it will not rely on the
Lorentz boosts. While Lorentz boosts are perfectly acceptable for systems such as
(1.1), they can limit further extensions to, e.g., multiple speed settings, equations in
exterior domains, or equations on stationary background geometries. Our proof is
readily adaptable to Dirichlet wave equations exterior to, say, star-shaped obstacles.
We do not include these extraneous details here. When combined with [3, 4, 16],
it (largely) completes the extension of the long-time existence results of [7, 11] to
exterior domains. The work on systems in [13] was also completed exterior to star-
shaped obstacles. The restriction to star-shaped obstacles is likely a convenience. It is
anticipated that any geometry that permits a sufficiently rapid decay of local energy
would suffice. See, e.g., [5, 6].

The key aspects to the proof are to effectively bound the solution u when typical
energy methods estimate ∂u and to obtain additional decay from the derivative that
must be present in at least one factor of every nonlinear term. In particular, it was
the former that restricted the analysis to scalar equations in preceding results. The
r p-weights and ghost weights help with both aspects. In particular, when combined
with rather standard Hardy-type estimates, improved bounds on the local energy of
the solution without derivatives, when compared to e.g. (2.2), result. When attempting
to gain additional decay from the derivative that must appear in at least one factor of

123



40 La Matematica (2023) 2:37–84

every term of the nonlinearity, one often relies on the scaling vector field, which near
the light cone gives additional decay in t − |x |. The ghost weight allows us to take
advantage of this additional decay off of the light cone.

Since derivatives can be exchanged for extra decay using the scaling vector field
and since the r p-weighted and ghost weighted estimates allow formuch larger weights
for the good derivatives, which in essence provides additional decay that can be used
on other factors, one can quickly become convinced that the worst possible nonlinear
terms are of the form u(∂t − ∂r )u. Moreover when all of the vector fields land on the
differentiated factor, one cannot afford to lose the additional vector field that would
result from using the scaling vector field to get additional decay. In this case, we move
the ∂t − ∂r using integration by parts. Within the local energy estimates, it could land
on the weights or the lower order factor, which allows us to gain additional decay,
in the latter case by using the scaling vector field. Additionally it could land on the
multiplier, which has the basic form ∂t + ∂r and modulo better behaved terms results
in � effectively turning these quadratic interactions into better cubic interactions.

This article is organized as follows. In the next subsection, we shall gather some
notation and preliminary results that will be used frequently throughout the paper. In
Sect. 2, the integrated local energy estimates will be proved. Section 3 contains our
sources of decay, which are primarily space–time versions of the Klainerman–Sobolev
inequality. Finally, the main theorem is proved in Sect. 4.

1.1 Notation

The vector fields that we rely on are

Z = (∂t , ∂1, ∂2, ∂3,�1,�2,�3, S)

where

S = t∂t + r∂r , � = x × ∇

represent the scaling vector field and generators of (spatial) rotations, respectively. We
will frequently rely on the orthogonal decomposition

∇ = x

r
∂r + 
∇,

and we shall use 
∂ = (∂t + ∂r , 
∇) as an abbreviation for the “good” derivatives. We
note that


∇ = − x

r2
× �,

and as such,

|
∇u| ≤ 1

r
|Zu|. (1.8)
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Moreover, the following commutator will be used frequently in the proofs of local
energy estimates, as it was in the seminal work [21]:

[∇, ∂r ] = [
∇, ∂r ] = 1

r

∇. (1.9)

The admissible vector fields are well known to satisfy

[�, ∂] = [�,� j ] = 0, [�, S] = 2�. (1.10)

Moreover, we have

[Z , ∂] ∈ span(∂), |[Z , 
∂]u| ≤ 1

r
|Zu| + |
∂u|. (1.11)

We shall abbreviate

|Z≤Nu| =
∑

|μ|≤N

|Zμu|, |∂≤Nu| =
∑

|μ|≤N

|∂μu|.

We use L pLq as an abbreviation for L p
t L

q
x ([0, T ] × R

3) = L p([0, T ]; Lq(R3)).
In several circumstances, it will be convenient to do an inhomogeneous dyadic
decomposition of R3, and for this purpose we denote

AR = {R < |x | < 2R}, ÃR =
{7
8
R < |x | <

17

8
R
}

if R > 1,

and A1 = {|x | < 2}, Ã1 = {|x | < 17/4}. For the standard integrated local energy
estimates, we shall employ the following notations from [19, 24]:

‖u‖LE = sup
j≥0

2− j/2‖u‖L2L2([0,T ]×A2 j )
, ‖u‖LE1 = ‖(∂u, |x |−1u)‖LE .

In the proof of the local energy estimates, we will often desire a C1(R), bounded,
nondecreasing function and for these purposes set

σU (z) = z

U + |z| , U > 0.

In the sequel, we shall also need dyadic decompositions in t − r , so we set

XU = {(t, x) ∈ [0, T ] × R
3 : U < t − r < 2U } forU > 1,

X1 = {(t, x) ∈ [0, T ] × R
3 : |t − r | < 2},

with a similar enlargement being denoted by X̃U .
The estimates from [19] rely on a mixed decomposition where the cone is divided

in |x | away from the light cone and in t − |x | near the cone. We set C = {r ≤ t + 2}.
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Due to the simplifying assumption that the data are compactly supported, it suffices
to consider only this region, though we believe that these estimates can be extended
to all of [0, T ] × R

3 in a straightforward fashion.
We first divide into dyadic intervals in time Cτ = {t ∈ [τ, 2τ ] ∩ [0, T ], r ≤ t + 2}.

Next, we shall decompose dyadically in r or t − r depending on the proximity to the
light cone. For R,U > 1, we set

CR
τ = Cτ ∩ {R < r < 2R}, CU

τ = Cτ ∩ {U < t − r < 2U }

and

CR=1
τ = Cτ ∩ {r < 2}, CU=1

τ = Cτ ∩ {|t − r | < 2}.

We note that

Cτ =
⎛
⎝ ⋃

1≤R≤τ/4

CR
τ

⎞
⎠ ∪

⎛
⎝ ⋃

1≤U≤τ/4

CU
τ

⎞
⎠ ∪ C

τ
2
τ ,

where

C
τ
2
τ = Cτ ∩

{
t − r ≥ τ

2

}
∩

{
r ≥ τ

2

}
.

We use C̃ R
τ , C̃

U
τ to denote enlargements of these sets on both the R/U and τ scales. In

the latter case, we enlarge from [τ, 2τ ]∩ [0, T ] to [(7/8)τ, 2τ ]∩ [0, T ]. Subsequently
˜̃CR
τ and ˜̃CU

τ will indicate further enlargements. The key observation is that

〈r〉 ≈ R, t − r ≈ τ, on CR
τ , C̃ R

τ ,
˜̃CR
τ , with 1 ≤ R ≤ τ/4

and

r ≈ τ, 〈t − r〉 ≈ U , on CU
τ , C̃U

τ ,
˜̃CU
τ , with 1 ≤ U ≤ τ/4.

In this sense, the C
τ
2
τ region can be thought of as either a CR

τ or a CU
τ region. Here and

throughout, R,U are understood to run over dyadic values. Here we have set 〈r〉 to
be a smooth function so that 〈r〉 ≥ 3 and 〈r〉 ≈ r for r � 1. For simplicity, we could
simply take 〈r〉 = (3 + r) and 〈T 〉 = (3 + T ).

In the sequel, we shall need cutoffs to localize to certain regions.We fixβ ∈ C∞(R)

so that β ≡ 1 for z < 1 and β ≡ 0 for z > 2. We then set

β<R(z) = β(z/R), β>R(z) = 1 − β<R(z).
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2 Local Energy Estimate

In this section, we shall collect some integrated local energy estimates, which will
serve as the main linear estimate for our proof of almost global existence. The first
of these is a now standard version of the original estimates of [21]. We proceed to
explore a variant of this that only bounds the “good” derivatives but with much better
weights. What results is a mixture of the ghost weight method of [1] (see also the
related estimates in [12]) and the r p-weighted local energy estimates of [2].

In this examination of a quasilinear problem, it will be helpful to have estimates on
small, time-dependent perturbations of the flat operator �. To this end, we define

(�hu)I = (∂2t − �)uI − hI ,αβ
J (t, x)∂α∂βu

J .

Here we shall assume that

hI ,αβ
J = hI ,βα

J = hJ ,αβ
I , hI ,αβ

J ∈ C1([0, T ] × R
3). (2.1)

We shall also abbreviate

|h| =
M∑

I ,J=1

3∑
α,β=0

∣∣∣hI ,αβ
J

∣∣∣ , |∂h| =
M∑

I ,J=1

3∑
α,β,γ=0

∣∣∣∂γ h
I ,αβ
J

∣∣∣ .
We begin by recalling the local energy estimate for perturbations of � that was

proved in [15]. See, also, [14, 17, 18, 23], and [20].

Theorem 2.1 Suppose that h satisfies (2.1), that |h| is sufficiently small, that u ∈
(C2([0, T ]×R

3))M, and that for all t ∈ [0, T ], |∂≤1u(t, x)| → 0 as |x | → ∞. Then,

‖∂u‖2L∞L2 + ‖u‖2LE1 � ‖∂u(0, · )‖2L2 +
T∫

0

∫
|�hu|

(
|∂u| + |u|

r

)
dx dt

+
T∫

0

∫ (
|∂h| + |h|

〈r〉
)

|∂u|
(

|∂u| + |u|
r

)
dx dt . (2.2)

The proof of the theorem follows by pairing �hu with the multiplier C∂t u +
σ2 j (r)∂r u + σ2 j (r)

r u, integrating over a space–time slab, and integrating by parts.
We next consider the following variant of Theorem 2.1. It represents a combination

of the ideas of [1, 2]. The former considered multipliers with principal part of the
form r p(∂t + ∂r )u. Rather than considering associated flux terms to bound terms
similar to the third term in the left side below, we shall instead modify the multiplier
using a ghost weight, which originates in [1]. This more readily allows us to perform
necessary manipulations to prevent a loss of regularity due to the quasilinear nature of
the problem. It will also allow us to subsequently integrate by parts to control a term
using ideas akin to normal forms.
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Theorem 2.2 Fix 0 < p < 2. Suppose that h satisfies (2.1), that u ∈ (C2([0, T ] ×
R
3))M, and that for all t ∈ [0, T ], |r p+2

2 ∂≤1u(t, x)| → 0 as |x | → ∞. Then for any
U > 0,

‖r p−2
2 
∂(ru)‖2L∞L2 + ‖r p−3

2 
∂(ru)‖2L2L2 + ‖r p−2
2 (σ ′

U (t − r))
1
2 (∂t + ∂r )(ru)‖2L2L2

� ‖r p−2
2 
∂(ru)(0, · )‖2L2 + sup

t∈[0,T ]

∫
r p|h||∂u|

(
|∂u| + |u|

r

)
dx

+ sup
t∈[0,T ]

∣∣∣
t∫

0

∫
r p−1e−σU (t−r)�hu ·

(
∂t + ∂r

)
(ru) dx dt

∣∣∣

+
T∫

0

∫
r p−1

(
|∂h| + |h|

r

)
|∂u||(∂t + ∂r )(ru)| dx dt

+
T∫

0

∫
r p−1|h||∂u|

(
|
∇u| + |u|

r

)
dx dt

+
T∫

0

∫
|h|r p−1σ ′

U (t − r)|∂u||(∂t + ∂r )(ru)| dx dt

+
T∫

0

∫
r p

(
|(∂t + ∂r )h| + |h|

r

)
|∂u|2 dx dt . (2.3)

The implicit constant is independent of both T and U.

Proof We first note that

t∫
0

∫
(�u)I r pe−σU (t−r)

(
∂t + ∂r + 1

r

)
uI dx dt

=
t∫

0

∞∫
0

∫
S2

(
∂2t − ∂2r − 
∇ · 
∇

)
(ru)I · r pe−σU (t−r)

(
∂t + ∂r

)
(ru)I dω dr dt .

Using integration by parts, we see that the right side is equal to

1

2

t∫
0

∫ ∞

0

∫
S2
r pe−σU (t−r)

(
∂t − ∂r

)∣∣∣(∂t + ∂r

)
(ru)

∣∣∣2 dω dr dt

+
t∫

0

∫ ∞

0

∫
S2

r pe−σU (t−r) 
∇(ru)I · 
∇
(
∂t + ∂r

)
(ru)I dω dr dt .
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Relying on (1.9), we further see that this is the same as

1

2

∞∫
0

∫
S2

r pe−σU (t−r)
∣∣∣(∂t + ∂r

)
(ru)

∣∣∣2 dω dr
∣∣∣t
t=0

+ p

2

t∫
0

∞∫
0

∫
S2

r p−1e−σU (t−r)
∣∣∣(∂t + ∂r

)
(ru)

∣∣∣2 dω dr dt

+
t∫

0

∞∫
0

∫
S2

r pσ ′
U (t − r)e−σU (t−r)

∣∣∣(∂t + ∂r

)
(ru)

∣∣∣2 dω dr dt

+
∫ t

0

∞∫
0

∫
S2

r p−1e−σU (t−r)|
∇(ru)|2 dω dr dt

+1

2

t∫
0

∞∫
0

∫
S2
r pe−σU (t−r)

(
∂t + ∂r

)
|
∇(ru)|2 dω dr dt .

A final integration by parts then gives that

t∫
0

∫
(�u)I r pe−σU (t−r)

(
∂t + ∂r + 1

r

)
uI dx dt

= 1

2

∞∫
0

∫
S2

r pe−σU (t−r)
(∣∣∣(∂t + ∂r

)
(ru)

∣∣∣2 + |
∇(ru)|2
)
dω dr

∣∣∣t
t=0

+ p

2

t∫
0

∞∫
0

∫
S2

r p−1e−σU (t−r)
∣∣∣(∂t + ∂r

)
(ru)

∣∣∣2 dω dr dt

+
(
1 − p

2

) t∫
0

∞∫
0

∫
S2

r p−1e−σU (t−r)|
∇(ru)|2 dω dr dt

+1

2

t∫
0

∞∫
0

∫
S2

r pσ ′
U (t − r)e−σU (t−r)

∣∣∣(∂t + ∂r

)
(ru)

∣∣∣2 dω dr dt . (2.4)

This string of equalities proves the desired estimate when h ≡ 0.
We now consider the perturbation. Using integration by parts, we note that
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−
t∫

0

∫
hI ,αβ
J ∂α∂βu

J · r pe−σU (t−r)
(
∂t + ∂r + 1

r

)
uI dx dt

= −
∫

hI ,0β
J r p−1e−σU (t−r)∂βu

J
(
∂t + ∂r

)
(ru I ) dx

∣∣∣t
t=0

+
t∫

0

∫
(∂αh

I ,αβ
J )r p−1e−σU (t−r)∂βu

J
(
∂t + ∂r

)
(ru I ) dx dt

+
t∫

0

∫
hI ,αβ
J r−1∂α

(
r pe−σU (t−r)

)
∂βu

J
(
∂t + ∂r

)
(ru I ) dx dt

+
t∫

0

∫
hI ,αβ
J r pe−σU (t−r)∂βu

J ∂α

(
∂t + ∂r + 1

r

)
uI dx dt .

Commuting the ∂α using (1.9) and using the symmetries (2.1), we see that

∫ t

0

∫
hI ,αβ
J r pe−σU (t−r)∂βu

J ∂α

(
∂t + ∂r + 1

r

)
uI dx dt

=
t∫

0

∫
hI ,kβ
J r p−1e−σU (t−r)∂βu

J 
∇ku
I dx dt

−
t∫

0

∫
hI ,kβ
J r p−2e−σU (t−r) xk

r
u I ∂βu

J dx dt

+1

2

t∫
0

∫
hI ,αβ
J r pe−σU (t−r)

(
∂t + ∂r + 2

r

)[
∂βu

J ∂αu
I
]
dx dt .

Combining the above two identities and integrating by parts, we obtain

−
t∫

0

∫
hI ,αβ
J ∂α∂βu

J · r pe−σU (t−r)
(
∂t + ∂r + 1

r

)
uI dx dt

= −
∫

hI ,0β
J r p−1e−σU (t−r)∂βu

J
(
∂t + ∂r

)
(ru I ) dx

∣∣∣t
t=0

+1

2

∫
hI ,αβ
J r pe−σU (t−r)∂βu

J ∂αu
I dx

∣∣∣t
t=0

+
t∫

0

∫
(∂αh

I ,αβ
J )r p−1e−σU (t−r)∂βu

J
(
∂t + ∂r

)
(ru I ) dx dt
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+p

t∫
0

∫
hI ,kβ
J

xk
r
r p−2e−σU (t−r)∂βu

J
(
∂t + ∂r

)
(ru I ) dx dt

+
t∫

0

∫
hI ,kβ
J r p−1e−σU (t−r)∂βu

J 
∇ku
I dx dt

−
t∫

0

∫
hI ,kβ
J r p−2e−σU (t−r) xk

r
u I ∂βu

J dx dt

+
t∫

0

∫
hI ,αβ
J ωαr

p−1σ ′
U (t − r)e−σU (t−r)∂βu

J (∂t + ∂r )(ru
I ) dx dt

−1

2

∫ t

0

∫ (
∂t + ∂r

)
(hI ,αβ

J )r pe−σU (t−r)∂βu
J ∂αu

I dx dt

− p

2

t∫
0

∫
hI ,αβ
J r p−1e−σU (t−r)∂βu

J ∂αu
I dx dt . (2.5)

Here ω = (−1, x/r). Our estimate (2.3) is an immediate consequence of (2.4) and
(2.5) and taking the supremum over t ∈ [0, T ].

We next consider a Hardy-type inequality to obtain associated bounds on the
solution, which are analogous to the bounds on ‖|x |−1u‖LE in (2.2).

Lemma 2.3 Let0 < p < 2. Suppose u ∈ C1([0, T ]×R
3)and that for every t ∈ [0, T ],

|r p/2u(t, x)| → 0 as |x | → ∞. Then

‖r p−3
2 u‖L2L2 + ‖r p−2

2 u‖L∞L2 � ‖r p−2
2 u(0, · )‖L2 + ‖r p−3

2 
∂(ru)‖L2L2 . (2.6)

Proof By integrating by parts, for any t ∈ [0, T ], we have

1

2 − p

∫
r p−2u2(t, x) dx +

t∫
0

∫
r p−3u2(τ, x) dx dτ

= 1

2 − p

∫
r p−2u2(t, x) dx + 1

p − 2

t∫
0

∫
S2

∫ ∞

0
(∂τ + ∂r )(r

p−2)(ru)2 dr dω dτ

= 1

2 − p

∫
r p−2u2(0, x) dx − 2

p − 2

∫ t

0

∫
S2

∞∫
0

r p−2(ru)(∂t + ∂r )(ru) dr dω dτ.
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As the Schwarz inequality allows us to bound the last term by

C

⎛
⎝ t∫

0

∫
r p−3u2 dx dτ

⎞
⎠

1/2 ⎛
⎝ t∫

0

∫
r p−3 [(∂t + ∂r )(ru)]2 dx dτ

⎞
⎠

1/2

and as the first factor can be bootstrapped, (2.6) follows upon taking a supremum in
t ∈ [0, T ].

While we will not directly use the next lemma, which indicates the form of the
lower order bound with decay in t − r and 0 < p < 1, we include it for the sake of
completeness.

Lemma 2.4 Let0 ≤ p < 1. Suppose u ∈ C1([0, T ]×R
3)and that for every t ∈ [0, T ],

|u(t, x)| → 0 as |x | → ∞. Then

T∫
0

∫
r p−2σ ′

U (t − r)e−σU (t−r)u2 dx dt

+ sup
t∈[0,T ]

∫
r p−1σ ′

U (t − r)e−σU (t−r)u2(t, x) dx

�
∫

r p−1σ ′
U (−r)e−σU (−r)u2(0, x) dx

+
T∫

0

∫
r p−2σ ′

U (t − r)e−σU (t−r)
[
(∂t + ∂r )(ru)

]2
dx dt . (2.7)

Proof We argue similarly to the preceding lemma and apply integration by parts and
the Schwarz inequality to observe that

t∫
0

∫
r p−2σ ′

U (τ − r)e−σU (τ−r)u2 dx dτ

+ 1

1 − p

∫
r p−1σ ′

U (t − r)e−σU (t−r)u2(t, x) dx

= 1

p − 1

t∫
0

∫
S2

∫ ∞

0
(∂τ + ∂r )[r p−1σ ′

U (τ − r)e−σU (τ−r)](ru)2 dr dω dτ

+ 1

1 − p

∫
r p−1σ ′

U (t − r)e−σU (t−r)u2(t, x) dx

= 1

1 − p

∫
r p−1σ ′

U (−r)e−σU (−r)u2(0, x) dx
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− 2

p − 1

t∫
0

∫
S2

∫ ∞

0
r p−1σ ′

U (τ − r)e−σU (τ−r)ru(∂t + ∂r )(ru) dr dω dτ

�
∫

r p−1σ ′
U (−r)e−σU (−r)u2(0, x) dx

+
⎛
⎝ t∫

0

∫
r p−2σ ′

U (τ − r)e−σU (τ−r)u2 dx dτ

⎞
⎠

1
2

×
⎛
⎝ t∫

0

∫
r p−2σ ′

U (τ − r)e−σU (τ−r) [(∂t + ∂r )(ru)]2 dx dτ

⎞
⎠

1
2

.

We may then bootstrap the first factor of the last term and take a supremum in t to
complete the argument.

We shall need the analog of the above when p = 1, which comes with a logarithmic
loss. It is this logarithm that is largely responsible for the difference between (1.6) and
the exp(c/ε) lifespan of [11].

Lemma 2.5 Suppose u ∈ C1([0, T ]×R
3) and that for every t ∈ [0, T ], |u(t, x)| → 0

as |x | → ∞. Then

T∫
0

∫
β>2(r)

1

r(log〈r〉)2 σ ′
U (t − r)e−σU (t−r)u2 dx dt

+ sup
t∈[0,T ]

∫
β>2(r)

1

log〈r〉σ
′
U (t − r)e−σU (t−r)u2(t, x) dx

�
∫

1

log〈r〉σ
′
U (−r)e−σU (−r)u2(0, x) dx

+
T∫

0

∫
r−1σ ′

U (t − r)e−σU (t−r)
[(

∂t + ∂r

)
(ru)

]2
dx dt + ‖u‖2LE1 . (2.8)

Proof We observe that

t∫
0

∫
β>2(r)

1

r(log r)2
σ ′
U (τ − r)e−σU (τ−r)u2 dx dτ

+
∫

β>2(r)
1

log r
σ ′
U (t − r)e−σU (t−r)u2(t, x) dx

=
t∫

0

∫
S2

∞∫
0

β>2(r)
(
∂τ + ∂r

)[
− 1

log r
σ ′
U (τ − r)e−σU (τ−r)

]
(ru)2 dr dω dτ
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+
∫

β>2(r)
1

log r
σ ′
U (t − r)e−σU (t−r)u2(t, x) dx

= 2

t∫
0

∫
S2

∫ ∞

0
β>2(r)

1

log r
σ ′
U (τ − r)e−σU (τ−r)(ru)

(
∂t + ∂r

)
(ru) dr dω dτ

+
∫

β>2(r)
1

log r
σ ′
U (−r)e−σU (−r)u2(0, x) dx

+
t∫

0

∫
β ′

>2(r)
1

log r
σ ′
U (τ − r)e−σU (τ−r)u2 dx dτ.

As suppβ ′
>2 ⊂ [2, 4], the last term is bounded by ‖u‖2

LE1 . The Schwarz inequality
shows that the first term in the right side is

�

⎛
⎝ t∫

0

∫
β>2(r)

1

r(log r)2
σ ′
U (τ − r)e−σU (τ−r)u2 dx dτ

⎞
⎠

1/2

×
⎛
⎝ t∫

0

∫
β>2(r)r

−1σ ′
U (τ − r)e−σU (τ−r)

[(
∂t + ∂r

)
(ru)

]2
dx dτ

⎞
⎠

1/2

.

The first factor may be bootstrapped, and upon taking a supremum over t ∈ [0, T ],
the proof is complete.

The following corollary combines (2.3), (2.6), and (2.7) when p = 1 with (1.10)
and provides the primary linear estimate that our proof is based upon.

Corollary 2.6 Fix N ∈ N. Suppose that h satisfies (2.1), that u ∈ C2([0, T ] × R
3),

and that for all t ∈ [0, T ], |r p+2
2 ∂≤1Z≤Nu(t, x)| → 0 as |x | → ∞. Then,

‖〈r〉 1
2 
∂Z≤Nu‖2L∞L2 + ‖r− 1

2 Z≤Nu‖2L∞L2 + ‖
∂Z≤Nu‖2L2L2 + ‖r−1Z≤Nu‖2L2L2

+ sup
U≥1

(
‖r− 1

2 〈t − r〉− 1
2 (∂t + ∂r )(r Z

≤Nu)‖2L2L2(XU )

+‖r− 1
2 (log〈r〉)−1〈t − r〉− 1

2 Z≤Nu‖2L2L2(XU )

)

� ‖r− 1
2 (r 
∂)≤1Z≤Nu(0, · )‖2L2 + sup

t∈[0,T ]

∫
r |h||∂Z≤Nu|

(
|∂Z≤Nu| + |Z≤Nu|

r

)
dx

+ sup
U≥1

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
e−σU (t−r)�h Z

≤Nu ·
(
∂t + ∂r

)
(r Z≤Nu) dx dt

∣∣∣

+
T∫

0

∫ (
|∂h| + |h|

r

)
|∂Z≤Nu||(∂t + ∂r )(r Z

≤Nu)| dx dt
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+
T∫

0

∫
|h||∂Z≤Nu|

(
|
∇Z≤Nu| + |Z≤Nu|

r

)
dx dt

+
T∫

0

∫
|h|〈t − r〉−1|∂Z≤Nu||(∂t + ∂r )(r Z

≤Nu)| dx dt

+
T∫

0

∫
r
(
|(∂t + ∂r )h| + |h|

r

)
|∂Z≤Nu|2 dx dt

+‖∂Z≤Nu‖2L∞L2 + ‖Z≤Nu‖2LE1 . (2.9)

Proof Using (2.6) and (2.8), we may adapt (2.3) with p = 1 to the bound

‖〈r〉 1
2 
∂Z≤Nu‖2L∞L2 + ‖r− 1

2 Z≤Nu‖2L∞L2 + ‖
∂Z≤Nu‖2L2L2 + ‖r−1Z≤Nu‖2L2L2

+‖r− 1
2 (σ ′

U (t − r))
1
2 (∂t + ∂r )(r Z

≤Nu)‖2L2L2

+‖r− 1
2 (log(〈r〉)−1(σ ′

U (t − r))
1
2 Z≤Nu‖2L2L2

� ‖r− 1
2 (r 
∂)≤1Z≤Nu(0, · )‖2L2 + sup

t∈[0,T ]

∫
r |h||∂Z≤Nu|

(
|∂Z≤Nu| + |Z≤Nu|

r

)
dx

+ sup
t∈[0,T ]

∣∣∣
t∫

0

∫
e−σU (t−r)�h Z

≤Nu ·
(
∂t + ∂r

)
(r Z≤Nu) dx dt

∣∣∣

+
T∫

0

∫ (
|∂h| + |h|

r

)
|∂Z≤Nu||(∂t + ∂r )(r Z

≤Nu)| dx dt

+
T∫

0

∫
|h||∂Z≤Nu|

(
|
∇Z≤Nu| + |Z≤Nu|

r

)
dx dt

+
T∫

0

∫
|h|σ ′

U (t − r)|∂Z≤Nu||(∂t + ∂r )(r Z
≤Nu)| dx dt

+
T∫

0

∫
r
(
|(∂t + ∂r )h| + |h|

r

)
|∂Z≤Nu|2 dx dt

+‖∂Z≤Nu‖2L∞L2 + ‖Z≤Nu‖2LE1 . (2.10)

We note that

σ ′
U (t − r) � 1

〈t − r〉 on XU , and σ ′
U (t − r) � 1

〈t − r〉 provided U ≥ 1.

Using these facts in (2.10) and subsequently taking a supremum in U yields (2.9).
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This last Hardy-type inequality is not strictly necessary.Whenwe set up an iteration
to solve (1.1), this will be a convenience when showing that the sequence converges.
In particular, it will allow us to focus only on energy and integrated local energy spaces
for this portion of the argument. A closely related calculation appears in [11].

Lemma 2.7 Suppose that u ∈ C1([0, T ] ×R
3) is supported where {r ≤ t + 2}. Then∫

1

(1 + r)(t − r + 3)2
u2 dx �

∫
1

(1 + r)r2
u2 dx +

∫
1

(1 + r)
(∂r u)2 dx .

(2.11)

Proof For t ∈ [0, T ] fixed, we integrate by parts and apply the Schwarz inequality to
obtain

∫
1

(1 + r)(t − r + 3)2
u2 dx =

∫
S2

∞∫
0

∂r [(t − r + 3)−1] r2

(1 + r)
u2 dr dω

= −
∫

1

t − r + 3
· 2 + r

r(1 + r)2
u2 dx

− 2
∫

1

(1 + r)(t − r + 3)
u ∂r u dx

�
(∫

1

(1 + r)(t − r + 3)2
u2 dx

) 1
2

×
[(∫

1

r2(1 + r)
u2 dx

) 1
2 +

(∫
1

(1 + r)
(∂r u)2 dx

) 1
2
]
.

Dividing both sides by the first factor in the right completes the proof.

3 Sobolev Estimates

The main decay estimate that we shall rely upon is a space–time variant of the
Klainerman–Sobolev estimate [8] that was established in [19] and is particularly well
adapted to integrated local energy estimates.

As is described in Sect. 1.1, we will break space–time up into CR
τ and CU

τ regions
where τ ∈ [0, T ] and 1 ≤ R,U ≤ τ/4. On these regions, we have the following
weighted Sobolev estimates, which will serve as our source of decay.

Lemma 3.1 For any τ ≥ 1 and 1 ≤ R,U ≤ τ/4, we have

‖w‖L∞L∞(CR
τ ) � 1

τ
1
2 R

3
2

‖Z≤4w‖L2L2(C̃ R
τ )

+ 1

τ
1
2 R

1
2

‖(∂t + ∂r )Z
≤3w‖L2L2(C̃ R

τ )
,

(3.1)

‖w‖L∞L∞(CU
τ ) � 1

τ
3
2U

1
2

‖Z≤4w‖L2L2(C̃U
τ )

+ 1

τ
3
2U

1
2

‖(∂t + ∂r )(r Z
≤3w)‖L2L2(C̃U

τ )
,

(3.2)
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‖w‖
L∞L∞(C

τ
2
τ )

� 1

τ 2
‖Z≤4w‖

L2L2(C̃
τ
2
τ )

+ 1

τ
‖(∂t + ∂r )Z

≤3w‖
L2L2(C̃

τ
2
τ )

(3.3)

See [19, Lemma 3.8]. The proof of (3.1) follows by changing coordinates to t = es ,
r = es+ρ and applying Sobolev embeddings in ω and the Fundamental Theorem of
Calculus in s and ρ. In fact, this yields

‖w‖L∞L∞(CR
τ ) � 1

τ
1
2 R

3
2

‖Z≤3w‖L2L2(C̃ R
τ )

+ 1

τ
1
2 R

‖Z≤3w‖1/2
L2L2(C̃ R

τ )
‖∂r Z≤3w‖1/2

L2L2(C̃ R
τ )

(3.4)

for any R > 1. In order to get additional decay out of differentiated terms, such as
those appearing in the last term of (3.4), the precedingwork [13] in (1+4)-dimensions
relied upon [19, Lemma 3.11]. As (2.9) provides better control on the good derivatives,
we can argue more simply and instead use

(∂t − ∂r ) = 2

t − r
S − t + r

t − r
(∂t + ∂r ). (3.5)

As (t+r)/(t−r) = O(1) on C̃ R
τ with R ≤ τ/4, (3.1) follows immediately. Replacing

w by β>τ/2(t − r)w in (3.4) and using that S(β>τ/2(t − r)) = O(1), (3.3) is obtained
similarly.

WhenU = 1, the other estimate (3.2) is an immediate corollary of (3.4) as we need
only consider ∂r as a vector field. When U > 1,

‖w‖L∞L∞(CU
τ ) � 1

τ
3
2U

1
2

‖Z≤3w‖L2L2(C̃U
τ )

+ U
1
2

τ
3
2

‖∂Z≤3w‖L2L2(C̃U
τ )

(3.6)

follows from arguments similar to the above in coordinates t + r = es , t − r = es+ρ .
Subsequently applying (3.5) yields (3.2).

It will also be helpful to have the following common weighted Sobolev estimate of
[9].

Lemma 3.2 Provided that h ∈ C∞(R3),

‖h‖L∞(AR) � R−1‖Z≤2h‖L2( ÃR)
. (3.7)

For R = 1, standard Sobolev embeddings yield the result. And for R > 1, after
localizing, one only needs to apply Sobolev embeddings in (r , ω). The decay is then
a consequence of converting the volume element dr dω to dx = r2 dr dω.
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4 Proof of Theorem 1.1

We shall solve (1.1) via iteration. We set u0 ≡ 0, and for k ≥ 1, let uk solve⎧⎪⎨
⎪⎩

�uI
k = aI ,α

J K u
J
k−1∂αuKk−1 + bI ,αβ

J K ∂αuJ
k−1∂βuKk−1 + AI ,αβ

J K uKk−1∂α∂βuJ
k

+BI ,αβγ

J K ∂γ uKk−1∂α∂βuJ
k ,

uk(0, · ) = f , ∂t uk(0, · ) = g.

(4.1)

Note that the right side of the equation is F I (uk−1, u′
k−1, u

′′
k ). We will show that the

sequence (uk) converges. The limit of this sequence is the desired solution.
We shall work with N = 60, though this is far from sharp. In the r p-weighted

estimates, we use p = 1 throughout.
To show that the sequence is convergent, we first show a certain boundedness.

Relying on that, we next demonstrate that the sequence is Cauchy, which due to
completeness of the spaces we are working in, finishes the proof.

4.1 Boundedness

For any fixed T ≤ Tε, we set

Mk = ‖∂Z≤60uk‖L∞L2 + ‖Z≤60uk‖LE1 + ‖
∂(Z≤60uk)‖L2L2

+‖r−1Z≤60uk‖L2L2 + ‖〈r〉 1
2 
∂Z≤60uk‖L∞L2 + ‖r− 1

2 Z≤60uk‖L∞L2

+ sup
U

‖r− 1
2 〈t − r〉− 1

2 (∂t + ∂r )(r Z
≤60uk)‖L2L2(XU )

+ sup
U

‖r− 1
2 (log〈r〉)−1〈t − r〉− 1

2 Z≤60uk‖L2L2(XU )

+
(∑

τ≤T

∑
R≤τ/2

‖∂Z≤50uk‖2L2L2(C̃ R
τ )

) 1
2 +

[∑
τ≤T

∑
R≤τ/2

(
R‖
∂∂Z≤40uk‖L2L2(C̃ R

τ )

)2] 1
2

+ sup
U

[ ∑
τ≥4U

( U
1
2

τ
1
2 log〈τ 〉

‖∂Z≤50uk‖L2L2(C̃U
τ )

)2] 1
2

+ sup
U

[ ∑
τ≥4U

(U 1
2 τ

1
2

log〈τ 〉 ‖
∂∂Z≤40uk‖L2L2(C̃U
τ )

)2] 1
2
. (4.2)

We call these terms Ik , I Ik , …, X Ik , X I Ik ,respectively. We shall argue inductively
to show that

Mk ≤ 2C0ε (4.3)

for a uniform constant C0 provided that T ≤ Tε. Indeed, for a universal constant C0,
we shall show that
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M2
k ≤ (C0ε)

2 + C(log〈T 〉)3M2
k−1Mk + C(log〈T 〉)3Mk−1M

2
k + C(log〈T 〉)2M4

k−1

+C(log〈T 〉)2M2
k−1M

2
k + C(log〈T 〉)5M4

k−1 + C(log〈T 〉)5M3
k−1Mk . (4.4)

From this, it follows that M1 ≤ C0ε. Then by the inductive hypothesis and (1.6),
provided that c and ε are sufficiently small (compared to C0), we obtain (4.3).

We briefly summarize the proof of (4.4) that is to follow. Note that terms Ik and I Ik
are bounded using the energy and integrated local energy estimate (2.2), while terms
I I Ik, . . . , V I I Ik represent the left side of (2.9). These eight terms are the principal
portions. To prove (4.4), upon applying (2.2) and (2.9), the product rule will guarantee
that one factor from each nonlinear term will be lower order (in terms of the number
of vector fields). As this factor can afford additional vector fields, we may apply our
decay estimates (3.1), (3.2), (3.3), or (3.7) to it.

Closing the argument requires that we obtain additional decay from the derivative
that must be present on at least one factor of every nonlinear term.When this derivative
is a “good” derivative 
∂ , this is relatively simple as the r p-weight allows it to be
bounded with a larger weight, which effectively provides additional decay to be used
for the other factors. For the ∂t − ∂r directions, provided that the factor can admit
an additional vector field (3.5) yields additional decay. Here the decay is in t − r ,
and the use of the ghost weight allows our estimates to take advantage of this. Terms
I Xk, . . . , X I Ik of (4.2) are commonly occurring factors where such a procedure is
utilized.

The resulting worst nonlinear term is when uk−1(∂t − ∂r )Z≤60uk−1 occurs within
the right side of (2.9). Here one integrates (∂t − ∂r ) by parts. When it lands on the
lower order factor, the procedure based in (3.5) described above can be used. When it
instead lands on the multiplier term, up to better behaved terms, �uk is reproduced.
This term is replaced using the nonlinear equation, and quartic interactions result.
The majority of the terms can be handled as above and the worst case is again the
uk−1(∂t −∂r )Z≤60uk−1 interactions. At this point, however, the two high-order factors
can be combined using the chain rule w∂w = 1

2∂w2, and integration by parts can be
used to move the derivative to the lower order factors where (3.5) can once again be
applied.

We note that the extra logarithmic factor in term V I I Ik is largely responsible for

our lifespan being exp(c/ε
1
3 ) rather than exp(c/ε) as is known for scalar equations.

In our applications of (2.2) and (2.9), we set

hI ,αβ
J = AI ,αβ

J K uKk−1 + BI ,αβγ

J K ∂γ u
K
k−1. (4.5)

We proceed with establishing the necessary bound for each of Ik, . . . , X I Ik .
[Ik + IIk] : We begin by showing

I 2k + I I 2k ≤ (C0ε)
2 + (log〈T 〉) 5

2 Mk−1M
2
k + (log〈T 〉) 5

2 M2
k−1Mk . (4.6)
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Using (2.2) and (1.5), we have that

I 2k + I I 2k ≤ C2
0ε

2 + C

T∫
0

∫
|�h Z

≤60uk |
(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

+C

T∫
0

∫ (
|∂∂≤1uk−1| + |∂≤1uk−1|

〈r〉
)
|∂Z≤60uk |

(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt .

(4.7)

We first note that we may apply (3.7) and the finite speed of propagation to see that
the last term in the right of (4.7) is bounded by

∑
0≤ j�log〈T 〉

2− j‖r−1(r∂)≤1Z≤3uk−1‖L∞L2

T∫
0

∫
A2 j

|∂Z≤60uk |
(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt .

The Schwarz inequality and a Hardy inequality then give that

T∫
0

∫ (
|∂∂≤1uk−1| + |∂≤1uk−1|

〈r〉
)
|∂Z≤60uk |

(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

� ‖∂Z≤3uk−1‖L∞L2

(
log〈T 〉‖Z≤60uk‖2LE1

)
� Ik−1

(
log〈T 〉I I 2k

)
, (4.8)

which is controlled by the right side of (4.6).
To address the second term in the right side of (4.7), we note that

|�h Z
≤60uk | �

(
|∂Z≤30uk−1| + |∂Z≤31uk |

)
|∂≤1Z≤60uk−1|

+|Z≤31uk−1|
(
|∂Z≤60uk−1| + |∂Z≤60uk |

)
. (4.9)

We first write

T∫
0

∫
|�h Z

≤60uk |
(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

�
∑
τ≤T

( ∑
R≤τ/2

∫ ∫
CR

τ

|�h Z
≤60uk |

(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

+
∑

U≤τ/4

∫ ∫
CU

τ

|�h Z
≤60uk |

(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

)
. (4.10)

123



La Matematica (2023) 2:37–84 57

By (3.1) and (3.3), we have

∫ ∫
CR

τ

(
|∂Z≤30uk−1| + |∂Z≤31uk |

)
|∂≤1Z≤60uk−1|

(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

�
(
‖∂Z≤34uk−1‖L2L2(C̃ R

τ )
+ ‖∂Z≤35uk‖L2L2(C̃ R

τ )

+R‖
∂∂Z≤33uk−1‖L2L2(C̃ R
τ )

+ R‖
∂∂Z≤34uk‖L2L2(C̃ R
τ )

)
×‖〈r〉−1∂≤1Z≤60uk−1‖L2L2(CR

τ )‖〈r〉−1(∂Z≤60uk, r
−1Z≤60uk)‖L2L2(CR

τ ).

Noting, for example, that

‖〈r〉−1∂Z≤60u‖2L2L2 =
∑
j

2− j
(
2− j‖∂Z≤60u‖2L2L2([0,T ]×A2 j )

)
� ‖Z≤60u‖2LE1 ,

we thus have

∑
τ≤T

∑
R≤τ/2

∫ ∫
CR

τ

(
|∂Z≤30uk−1| + |∂Z≤31uk |

)
|∂≤1Z≤60uk−1|

(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

�
(
I Xk−1 + I Xk + Xk−1 + Xk

)(
I Vk−1 + I Ik−1

)
I Ik . (4.11)

Similarly,

∫ ∫
CR

τ

|Z≤31uk−1|
(
|∂Z≤60uk−1| + |∂Z≤60uk |

)(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

�
(
‖r−1Z≤35uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤34uk−1‖L2L2(C̃ R

τ )

)
×‖〈r〉− 1

2 (∂Z≤60uk, r
−1Z≤60uk)‖L2L2(CR

τ )

×
(
‖〈r〉− 1

2 ∂Z≤60uk−1‖L2L2(CR
τ ) + ‖〈r〉− 1

2 ∂Z≤60uk‖L2L2(CR
τ )

)
.

Since the initial data are supported in {|x | ≤ 2}, we get

‖〈r〉− 1
2 ∂Z≤60u‖2L2L2 ≤

∑
j�log〈T 〉

2− j‖∂Z≤60u‖2L2L2([0,T ]×A2 j )

� log〈T 〉‖Z≤60u‖2LE1 . (4.12)
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It follows that

∑
τ≤T

∑
R≤τ/2

∫ ∫
CR

τ

|Z≤31uk−1|
(
|∂Z≤60uk−1| + |∂Z≤60uk |

)(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

�
(
I Vk−1 + I I Ik−1

)
· I Ik · (log〈T 〉) 1

2

(
I Ik−1 + I Ik

)
. (4.13)

By (3.2),

∫ ∫
CU

τ

(
|∂Z≤30uk−1| + |∂Z≤31uk |

)
|∂≤1Z≤60uk−1|

(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

� U
1
2

τ
1
2

(
‖∂Z≤34uk−1‖L2L2(C̃U

τ )
+ ‖∂Z≤35uk‖L2L2(C̃U

τ )

+τ‖
∂∂Z≤33uk−1‖L2L2(C̃U
τ )

+ τ‖
∂∂Z≤34uk‖L2L2(C̃U
τ )

)
×U−1‖〈r〉− 1

2 ∂≤1Z≤60uk−1‖L2L2(CU
τ )‖〈r〉−

1
2 (∂Z≤60uk, r

−1Z≤60uk)‖L2L2(CU
τ ).

Thus, using (4.12),

∑
τ≤T

∑
U≤τ/4

∫ ∫
CU

τ

(
|∂Z≤30uk−1| + |∂Z≤31uk |

)

×|∂≤1Z≤60uk−1|
(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

� log〈T 〉
(
X Ik−1 + X Ik + X I Ik−1 + X I Ik

)(
log〈T 〉V I I Ik−1 + (log〈T 〉) 1

2 I Ik−1

)
×

(
(log〈T 〉) 1

2 I Ik
)
. (4.14)

Relying on (3.2) again, we have

∫ ∫
CU

τ

|Z≤31uk−1|
(
|∂Z≤60uk−1| + |∂Z≤60uk |

)(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx dt

� 1

U
1
2 τ

1
2

(
‖Z≤35uk−1‖L2L2(C̃U

τ )
+ ‖(∂t + ∂r )(r Z

≤34uk−1)‖L2L2(C̃U
τ )

)
×

(
‖〈r〉− 1

2 ∂Z≤60uk−1‖L2L2(CU
τ ) + ‖〈r〉− 1

2 ∂Z≤60uk‖L2L2(CU
τ )

)
×‖〈r〉− 1

2 (∂Z≤60uk, r
−1Z≤60uk)‖L2L2(CU

τ ).

Upon using (4.12), it follows that
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∑
τ≤T

∑
U≤τ/4

∫ ∫
CU

τ

|Z≤31uk−1|
(
|∂Z≤60uk−1| + |∂Z≤60uk |

)(
|∂Z≤60uk | + |Z≤60uk |

|x |
)
dx dt

�
(
log〈T 〉V I I Ik−1 + V I Ik−1

)(
(log〈T 〉) 1

2 I Ik−1 + (log〈T 〉) 1
2 I Ik

)(
(log〈T 〉) 1

2 I Ik
)
.

(4.15)

By plugging bounds (4.8), (4.11), (4.13), (4.14), (4.15) into (4.7) and(4.10) we
obtain the desired bound (4.6).

[IIIk + IVk + Vk + VIk + VIIk + VIIIk]: Here, relying on (2.9), we show that

I I I 2k + I V 2
k + V 2

k + V I 2k + V I I 2k + V I I I 2k ≤ (C0ε)
2

+C(log〈T 〉)3Mk−1M
2
k + C(log〈T 〉)3M2

k−1Mk

+C(log〈T 〉)5M4
k−1 + C(log〈T 〉)5M3

k−1Mk . (4.16)

The first term in the right of (2.9) is bounded by C2
0ε

2 due to (1.5). We will proceed,
in order, to showing that each of the terms, other than the �h Z≤60uk term, in the right
side of (2.9) are bounded by

C log〈T 〉3
(
M2

k−1Mk + Mk−1M
2
k

)
. (4.17)

We will argue separately that the �h Z≤60uk term is bounded by the right side of
(4.16), which will establish the desired bound.

To control the second term in the right side of (2.9), we will consider the integral
at an arbitrary t ∈ [0, T ], and we fix a dyadic value τ so that t ∈ [τ, 2τ ]. For
1 ≤ R ≤ τ/2, we can apply (3.1) and (3.3) and a Hardy inequality (after expanding
the range of integration of the norm of r−1|Z≤60uk | from AR to R3) to see

∫
AR

r |∂≤1uk−1||∂Z≤60uk |
(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx

�
(
R−1‖Z≤5uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤4uk−1‖L2L2(C̃ R

τ )

)
‖∂Z≤60uk(t, · )‖L2(AR)‖∂Z≤60uk‖L∞L2 .

And hence, using the Schwarz inequality,

sup
t∈[0,T ]

∑
R≤τ/2

∫
AR

r |∂≤1uk−1||∂Z≤60uk |
(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx

�
(
I Vk−1 + I I Ik−1

)
I 2k ,
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which is dominated by (4.17). For the remainder of this term, (3.2) and a Hardy
inequality show that

∑
1≤U≤τ/4

∫
〈t−r〉≈U

r |∂≤1uk−1||∂Z≤60uk |
(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx

� sup
U

( 1

τ
1
2U

1
2

‖Z≤4uk−1‖L2L2(C̃U
τ )

+ 1

τ
1
2U

1
2

‖(∂t + ∂r )(r Z
≤3uk−1)‖L2L2(C̃U

τ )

)
×‖∂Z≤60uk(t, · )‖2L2 .

The supremum of this is bounded by

(
log〈T 〉V I I Ik−1 + V I Ik−1

)
I 2k .

Thus,

sup
t∈[0,T ]

∫
r |∂≤1uk−1||∂Z≤60uk |

(
|∂Z≤60uk | + |Z≤60uk |

r

)
dx

�
(
I Vk−1 + I I Ik−1 + log〈T 〉V I I Ik−1 + V I Ik−1

)
I 2k . (4.18)

We proceed to showing that

sup
U≥1

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
e−σU (t−r)�h Z

≤60uk ·
(
∂t + ∂r

)
(r Z≤60uk) dx dt

∣∣∣
� (log〈T 〉)3

(
M2

k−1Mk + Mk−1M
2
k

)
+(log〈T 〉)5M4

k−1 + (log〈T 〉)5M3
k−1Mk . (4.19)

Proof of (4.19). Themost delicate terms in this analysis are those of the form uk−1(∂t −
∂r )Z≤60uk−1. Here we have a bad derivative occurring at the highest regularity, and
thus there is not room to apply, for example, (3.5) directly in order to get additional
decay.

We begin by examining the other terms. To this end, we set ω = (1,−x/r) and
note that

|�h Z
≤60uI

k − aI ,α
J Kωαu

J
k−1(∂t − ∂r )Z

≤60uKk−1|
� |Z≤30uk−1||
∂Z≤60uk−1| + |∂Z≤30uk−1||∂≤1Z≤60uk−1|

+|Z≤30uk−1||∂Z≤59uk−1| + |∂Z≤31uk ||∂≤1Z≤60uk−1|
+|∂≤1Z≤30uk−1||∂2Z≤59uk |. (4.20)
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Using (3.1), (3.2), and (3.3) gives us that∫ ∫
CR

τ

r |Z≤30uk−1||
∂Z≤60uk−1|
(
|
∂Z≤60uk | + r−1|Z≤60uk |

)
dx dt

�
(
R−1‖Z≤34uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤33uk−1‖L2L2(C̃ R

τ )

)
‖
∂Z≤60uk−1‖L2L2(CR

τ )

×
(
‖
∂Z≤60uk‖L2L2(CR

τ ) + ‖r−1Z≤60uk‖L2L2(CR
τ )

)
,

and, respectively,∫ ∫
CU

τ

r |Z≤30uk−1||
∂Z≤60uk−1|
(
|
∂Z≤60uk | + r−1|Z≤60uk |

)
dx dt

�
( 1

U
1
2 τ

1
2

‖Z≤34uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤33uk−1)‖L2L2(C̃U

τ )

)
×‖
∂Z≤60uk−1‖L2L2(CU

τ )

×
(
‖
∂Z≤60uk‖L2L2(CU

τ ) + ‖r−1Z≤60uk‖L2L2(CU
τ )

)
.

Upon summing over R ≤ τ/2, U ≤ τ/4 and τ ≤ T , we get

∫ T

0

∫
r |Z≤30uk−1||
∂Z≤60uk−1|

(
|
∂Z≤60uk | + r−1|Z≤60uk |

)
dx dt

� (I Vk−1 + I I Ik−1 + log〈T 〉V I I Ik−1 + V I Ik−1)I I Ik−1(I I Ik + I Vk).

(4.21)

Another application of (3.1) and (3.3) gives∫ ∫
CR

τ

r |∂Z≤30uk−1||∂≤1Z≤60uk−1|
(
|
∂Z≤60uk | + r−1|Z≤60uk |

)
dx dt

�
(
‖∂Z≤34uk−1‖L2L2(C̃ R

τ )
+ R‖
∂∂Z≤33uk−1‖L2L2(C̃ R

τ )

)
R−1‖∂≤1Z≤60uk−1‖L2L2(CR

τ )

×
(
‖
∂Z≤60uk‖L2L2(CR

τ ) + ‖r−1Z≤60uk‖L2L2(CR
τ )

)
.

Similarly, using (3.2), we get∫ ∫
CU

τ

|∂Z≤30uk−1||∂≤1Z≤60uk−1|
(
|(∂t + ∂r )(r Z

≤60uk)|
)
dx dt

�
(U 1

2

τ
1
2

‖∂Z≤34uk−1‖L2L2(C̃U
τ )

+U
1
2 τ

1
2 ‖(∂t + ∂r )∂Z

≤33uk−1‖L2L2(C̃U
τ )

)
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× 1

U
1
2 τ

1
2

‖∂≤1Z≤60uk−1‖L2L2(CU
τ )

× 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤60uk)‖L2L2(CU

τ ).

Upon summing, these give

T∫
0

∫
|∂Z≤30uk−1||∂≤1Z≤60uk−1||(∂t + ∂r )(r Z

≤60uk)| dx dt

� (I Xk−1 + Xk−1)(I Ik−1 + I Vk−1)(I I Ik + I Vk)

+(log〈T 〉)2
(
X Ik−1 + X I Ik−1

)(
(log〈T 〉) 1

2 I Ik−1 + log〈T 〉V I I Ik−1

)
V I Ik .

(4.22)

Following the same argument, we also obtain

T∫
0

∫
|∂Z≤31uk ||∂≤1Z≤60uk−1||(∂t + ∂r )(r Z

≤60uk)| dx dt

� (I Xk + Xk)(I Ik−1 + I Vk−1)(I I Ik + I Vk)

+(log〈T 〉)2
(
X Ik + X I Ik

)(
(log〈T 〉) 1

2 I Ik−1 + log〈T 〉V I I Ik−1

)
V I Ik .

(4.23)

We now apply both (3.5) and (3.1) (and (3.3)) to see that

∫ ∫
CR

τ

|Z≤30uk−1||∂Z≤59uk−1||(∂t + ∂r )(r Z
≤60uk)| dx dt

�
( 1

R
‖Z≤34uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤33uk−1‖L2L2(C̃ R

τ )

)
( 1

R
‖Z≤60uk−1‖L2L2(CR

τ ) + ‖
∂Z≤59uk−1‖L2L2(CR
τ )

)
×

(
‖
∂Z≤60uk‖L2L2(CR

τ ) + 1

R
‖Z≤60uk‖L2L2(CR

τ )

)
,

while (3.5) and (3.2) give

∫ ∫
CU

τ

|Z≤30uk−1||∂Z≤59uk−1||(∂t + ∂r )(r Z
≤60uk)| dx dt

� 1

U
1
2 τ

1
2

(
‖Z≤34uk−1‖L2L2(C̃U

τ )
+ ‖(∂t + ∂r )(r Z

≤33uk−1)‖L2L2(C̃U
τ )

)
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× 1

U
1
2 τ

1
2

(
‖Z≤60uk−1‖L2L2(CU

τ ) + ‖(∂t + ∂r )(r Z
≤60uk−1)‖L2L2(CU

τ )

)

× 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤60uk)‖L2L2(CU

τ ).

Upon summation, this gives

T∫
0

∫
|Z≤30uk−1||∂Z≤59uk−1||(∂t + ∂r )(r Z

≤60uk)| dx dt

� (I Vk−1 + I I Ik−1)
2(I I Ik + I Vk)

+ log〈T 〉
(
log〈T 〉V I I Ik−1 + V I Ik−1

)2
V I Ik . (4.24)

Very similar arguments give

∫ ∫
CR

τ

|∂≤1Z≤30uk−1||∂2Z≤59uk ||(∂t + ∂r )(r Z
≤60uk)| dx dt

�
( 1

R
‖Z≤35uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤34uk−1‖L2L2(C̃ R

τ )

)
×

( 1

R
‖∂Z≤60uk‖L2L2(CR

τ ) + ‖
∂Z≤60uk‖L2L2(CR
τ )

)
×

(
‖
∂Z≤60uk‖L2L2(CR

τ ) + 1

R
‖Z≤60uk‖L2L2(CR

τ )

)

and ∫ ∫
CU

τ

|∂≤1Z≤30uk−1||∂2Z≤59uk ||(∂t + ∂r )(r Z
≤60uk)| dx dt

� 1

U
1
2 τ

1
2

(
‖Z≤35uk−1‖L2L2(C̃U

τ )
+ ‖(∂t + ∂r )(r Z

≤34uk−1)‖L2L2(C̃U
τ )

)

× 1

U
1
2 τ

1
2

(
‖∂Z≤60uk‖L2L2(CU

τ ) + ‖(∂t + ∂r )(r Z
≤60uk)‖L2L2(CU

τ )

)

× 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤60uk)‖L2L2(CU

τ ),

which yield

T∫
0

∫
|∂≤1Z≤30uk−1||∂2Z≤59uk ||(∂t + ∂r )(r Z

≤60uk)| dx dt

� (I Vk−1 + I I Ik−1)(I Ik + I I Ik)(I I Ik + I Vk)

+
(
log〈T 〉V I I Ik−1 + V I Ik−1

)(
I Ik + log〈T 〉V I Ik

)
V I Ik . (4.25)
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As the right sides of (4.21), (4.22), (4.23), (4.24), and (4.25) are bounded by (4.17),
to complete the bound (4.19), we need only examine

sup
U≥1

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
e−σU (t−r)aI ,α

J Kωαu
J
k−1(∂t − ∂r )Z

≤60uKk−1(∂t + ∂r )(r Z
≤60uI

k ) dx dt
∣∣∣.

The argument that we shall use here is reminiscent of normal forms.
We first integrate by parts to see that

t∫
0

∫
e−σU (t−r)aI ,α

J Kωαu
J
k−1(∂t − ∂r )Z

≤60uKk−1(∂t + ∂r )(r Z
≤60uI

k ) dx dt

=
∫

e−σU (t−r)aI ,α
J Kωαu

J
k−1Z

≤60uKk−1(∂t + ∂r )(r Z
≤60uI

k ) dx
∣∣∣t
0

+2

t∫
0

∫
r−1e−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1(∂t + ∂r )(r Z
≤60uI

k ) dx dt

+2

t∫
0

∫
σ ′
U (t − r)e−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1(∂t + ∂r )(r Z
≤60uI

k ) dx dt

−
t∫

0

∫
e−σU (t−r)aI ,α

J Kωα(∂t − ∂r )u
J
k−1Z

≤60uKk−1(∂t + ∂r )(r Z
≤60uI

k ) dx dt

−
t∫

0

∫
e−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1(∂
2
t − ∂2r )(r Z≤60uI

k ) dx dt . (4.26)

We shall proceed through arguments that will bound each term in (4.26).
For t fixed and τ ≈ t , we may apply (3.1), (3.3), and the Schwarz inequality to see

that

∑
R≤τ/2

∫
AR

r |uk−1||Z≤60uk−1|
(
|
∂Z≤60uk | + r−1|Z≤60uk |

)
dx

�
(
‖r−1Z≤4uk−1‖L2L2 + ‖
∂Z≤3uk−1‖L2L2

)
‖r− 1

2 Z≤60uk−1(t, · )‖L2

×
(
‖〈r〉 1

2 
∂Z≤60uk(t, · )‖L2 + ‖r− 1
2 Z≤60uk(t, · )‖L2

)
.

Using (3.2), we instead get

∑
U≤τ/4

∫
〈t−r〉≈U

r |uk−1||Z≤60uk−1|
(
|
∂Z≤60uk | + r−1|Z≤60uk |

)
dx
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� sup
U

[ 1

U
1
2 τ

1
2

(
‖Z≤4uk−1‖L2L2(C̃U

τ )
+ ‖(∂t + ∂r )(r Z

≤3uk−1)‖L2L2(C̃U
τ )

)]
×‖r− 1

2 Z≤60uk−1(t, · )‖L2

×
(
‖〈r〉 1

2 
∂Z≤60uk(t, · )‖L2 + ‖r− 1
2 Z≤60uk(t, · )‖L2

)
.

As such,

sup
U

sup
t∈[0,T ]

∣∣∣∫ e−σU (t−r)aI ,α
J Kωαu

J
k−1Z

≤60uKk−1(∂t + ∂r )(r Z
≤60uI

k ) dx
∣∣∣t
0

∣∣∣
�

(
I Vk−1 + I I Ik−1 + log〈T 〉V I I Ik−1 + V I Ik−1

)
V Ik−1(Vk + V Ik).

(4.27)

For the second term in the right of (4.26), provided R ≤ τ/2, we may apply (3.1)
or (3.3) to see that

∫ ∫
CR

τ

|uk−1||Z≤60uk−1|
(
|
∂Z≤60uk | + r−1|Z≤60uk |

)
dx dt

�
(
‖r−1Z≤4uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤3uk−1‖L2L2(C̃ R

τ )

)
‖r−1Z≤60uk−1‖L2L2(CR

τ )

×
(
‖
∂Z≤60uk‖L2L2(CR

τ ) + ‖r−1Z≤60uk‖L2L2(CR
τ )

)
, (4.28)

and for U ≤ τ/4, (3.2) gives

∫ ∫
CU

τ

r−1|uk−1||Z≤60uk−1||(∂t + ∂r )(r Z
≤60uk)| dx dt

�
(1
τ

‖Z≤4uk−1‖L2L2(C̃U
τ )

+ 1

τ
‖(∂t + ∂r )(r Z

≤3uk−1)‖L2L2(C̃U
τ )

)
×1

τ
‖Z≤60uk−1‖L2L2(CU

τ )

× 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤60uk)‖L2L2(CU

τ ). (4.29)

Upon summing, this results in

T∫
0

∫
r−1|uk−1||Z≤60uk−1||(∂t + ∂r )(r Z

≤60uk)| dx dt

� (I Vk−1 + I I Ik−1)I Vk−1(I I Ik + I Vk + V I Ik), (4.30)

which suffices for the bound in the supremum (in both t and U ) of the second term in
the right side of (4.26).
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Similar to (4.29), we estimate

∫ ∫
CU

τ

1

U
|uk−1||Z≤60uk−1||(∂t + ∂r )(r Z

≤60uk)| dx dt

�
( 1

τ
1
2U

1
2

‖Z≤4uk−1‖L2L2(C̃U
τ )

+ 1

τ
1
2U

1
2

‖(∂t + ∂r )(r Z
≤3uk−1)‖L2L2(C̃U

τ )

)

× 1

τ
1
2U

1
2

‖Z≤60uk−1‖L2L2(CU
τ )

× 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤60uk)‖L2L2(CU

τ ).

Since

σ ′
U (t − r) � 1

τ
on CR

τ , σ ′
U (t − r) � 1

U
on CU

τ ,

we may combine this with (4.28) to see that

T∫
0

∫
σ ′
U (t − r)|uk−1||Z≤60uk−1||(∂t + ∂r )(r Z

≤60uk)| dx dt

� (I Vk−1 + I I Ik−1)I Vk−1(I I Ik + I Vk)

+(log〈T 〉)2
(
log〈T 〉V I I Ik−1 + V I Ik−1

)
V I I Ik−1V I Ik, (4.31)

which provides the appropriate bound for the supremums of the third term in (4.26).
As (4.22) suffices to bound the fourth term in the right side of (4.26), it remains to

consider

t∫
0

∫
e−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1(∂
2
t − ∂2r )(r Z≤60uI

k ) dx dt

=
t∫

0

∫
e−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1 
∇ · 
∇(r Z≤60uI
k ) dx dt

+
t∫

0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1h
I ,βγ

J̃
∂β∂γ Z

≤60u J̃
k dx dt

+
t∫

0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1�h Z
≤60uI

k dx dt . (4.32)
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For the first term in the right, we integrate by parts and use (1.8) to see that

sup
U

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
e−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1 
∇ · 
∇(r Z≤60uI
k ) dx dt

∣∣∣

�
T∫

0

∫
|Z≤1uk−1||Z≤60uk−1||
∇Z≤60uk | dx dt

+
T∫

0

∫
r |uk−1||
∇Z≤60uk−1||
∇Z≤60uk | dx dt .

The preceding bound (4.21) shows that the latter term is controlled by (4.17). And
(3.1) (and (3.3)) and (3.2), respectively, give

∫ ∫
CR

τ

|Z≤1uk−1||Z≤60uk−1||
∇Z≤60uk | dx dt

�
(
‖r−1Z≤5uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤4uk−1‖L2L2(C̃ R

τ )

)
×‖r−1Z≤60uk−1‖L2L2(CR

τ )‖
∂Z≤60uk‖L2L2(CR
τ )

and ∫ ∫
CU

τ

|Z≤1uk−1||Z≤60uk−1||
∇Z≤60uk | dx dt

�
( 1

U
1
2 τ

1
2

‖Z≤5uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤4uk−1)‖L2L2(C̃U

τ )

)
×‖r−1Z≤60uk−1‖L2L2(CU

τ )‖
∂Z≤60uk‖L2L2(CU
τ ).

Hence,

T∫
0

∫
|Z≤1uk−1||Z≤60uk−1||
∇Z≤60uk | dx dt

� (I Vk−1 + I I Ik−1 + log〈T 〉V I I Ik−1 + V I Ik−1)I Vk−1 I I Ik,

which shows that

sup
U

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
e−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1 
∇ · 
∇(r Z≤60uI
k ) dx dt

∣∣∣
� log〈T 〉M2

k−1Mk . (4.33)
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Another integration by parts gives

sup
U

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1h
I ,βγ

J̃
∂β∂γ Z

≤60u J̃
k dx dt

∣∣∣
� sup

t∈[0,T ]

∫
r |∂≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx

+
T∫

0

∫
|∂≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx dt

+
T∫

0

∫
r

〈t − r〉 |∂
≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx dt

+
T∫

0

∫
r |∂≤1uk−1||∂∂≤1uk−1||Z≤60uk−1||∂Z≤60uk | dx dt

+
T∫

0

∫
r |∂≤1uk−1|2|∂Z≤60uk−1||∂Z≤60uk | dx dt . (4.34)

If we argue precisely as in (4.27), we see that

sup
t∈[0,T ]

∫
r |∂≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx

�
(
I Vk−1 + I I Ik−1 + log〈T 〉V I I Ik−1 + V I Ik−1

)
V Ik−1‖〈r〉 1

2 |∂≤1uk−1||∂Z≤60uk |‖L∞L2 .

Subsequently applying (3.7) gives that

‖〈r〉 1
2 |∂≤1uk−1||∂Z≤60uk |‖L∞L2 � ‖r− 1

2 Z≤3uk−1‖L∞L2‖∂Z≤60uk‖L∞L2 .

And hence,

sup
t∈[0,T ]

∫
r |∂≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx

�
(
I Vk−1 + I I Ik−1 + log〈T 〉V I I Ik−1 + V I Ik−1

)
V Ik−1V Ik−1 Ik .

(4.35)
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For the remaining terms in (4.34), we continue to apply (3.1), (3.2), and (3.3)
repeatedly. These give

∫ ∫
CR

τ

|∂≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx dt

�
(
‖r−1Z≤5uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤4uk−1‖L2L2(C̃ R

τ )

)2
×‖r−1Z≤60uk−1‖L2L2(CR

τ )

1

R
1
2

‖r− 1
2 ∂Z≤60uk‖L2L2(CR

τ )

and

∫ ∫
CU

τ

|∂≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx dt

�
( 1

U
1
2 τ

1
2

‖Z≤5uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤4uk−1)‖L2L2(C̃U

τ )

)2
×‖r−1Z≤60uk−1‖L2L2(CU

τ )

1

τ
1
2

‖r− 1
2 ∂Z≤60uk‖L2L2(CU

τ ).

Similarly,

∫ ∫
CU

τ

r

〈t − r〉 |∂
≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx dt

�
( 1

U
1
2 τ

1
2

‖Z≤5uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤4uk−1)‖L2L2(C̃U

τ )

)2
×U−1‖r− 1

2 Z≤60uk−1‖L2L2(CU
τ )‖r− 1

2 ∂Z≤60uk‖L2L2(CU
τ ).

These combine to give

T∫
0

∫
|∂≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx dt

+
∫ ∫

CU
τ

r

〈t − r〉 |∂
≤1uk−1|2|Z≤60uk−1||∂Z≤60uk | dx dt

� (I Vk−1 + I I Ik−1)
2 I Vk−1 I Ik + (log〈T 〉V I I Ik−1 + V I Ik−1)

2

×
(
I Vk−1 I Ik + log〈T 〉V I I Ik−1 I Ik

)
. (4.36)
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By related arguments,

∫ ∫
CR

τ

r |∂≤1uk−1||∂∂≤1uk−1||Z≤60uk−1||∂Z≤60uk | dx dt

�
(
‖r−1Z≤5uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤4uk−1‖L2L2(C̃ R

τ )

)
‖r−1Z≤60uk−1‖L2L2(CR

τ )

×
(
‖∂Z≤5uk−1‖L2L2(C̃ R

τ )
+ R‖
∂∂Z≤4uk−1‖L2L2(C̃ R

τ )

)
R− 1

2 ‖〈r〉− 1
2 ∂Z≤60uk‖L2L2(CR

τ )

and

∫ ∫
CU

τ

r |∂≤1uk−1||∂∂≤1uk−1||Z≤60uk−1||∂Z≤60uk | dx dt

� 1

U
1
2

( 1

U
1
2 τ

1
2

‖Z≤5uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤4uk−1)‖L2L2(C̃U

τ )

)

×
(U 1

2

τ
1
2

‖∂Z≤5uk−1‖L2L2(C̃U
τ )

+U
1
2 τ

1
2 ‖
∂∂Z≤4uk−1‖L2L2(C̃U

τ )

)

× 1

U
1
2 τ

1
2

‖Z≤60uk−1‖L2L2(CU
τ )

1

τ
1
2

‖∂Z≤60uk‖L2L2(CU
τ ),

which gives

T∫
0

∫
r |∂≤1uk−1||∂∂≤1uk−1||Z≤60uk−1||∂Z≤60uk | dx dt

� (I Vk−1 + I I Ik−1)(I Xk−1 + Xk−1)I Vk−1 I Ik
+(log〈T 〉)2(log〈T 〉V I I Ik−1 + V I Ik−1)

×(X Ik−1 + X I Ik−1)V I I Ik−1 I Ik . (4.37)

For the last term in (4.34), we get

∫ ∫
CR

τ

r |∂≤1uk−1|2|∂Z≤60uk−1||∂Z≤60uk | dx dt

�
(
‖r−1Z≤5uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤4uk−1‖L2L2(C̃ R

τ )

)2
×‖r− 1

2 ∂Z≤60uk−1‖L2L2(CR
τ )‖r− 1

2 ∂Z≤60uk‖L2L2(CR
τ )
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and∫ ∫
CU

τ

r |∂≤1uk−1|2|∂Z≤60uk−1||∂Z≤60uk | dx dt

�
( 1

U
1
2 τ

1
2

‖Z≤5uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤4uk−1)‖L2L2(C̃U

τ )

)2
×‖r− 1

2 ∂Z≤60uk−1‖L2L2(CU
τ )‖r− 1

2 ∂Z≤60uk‖L2L2(CU
τ ),

yielding

∫ T

0

∫
r |∂≤1uk−1|2|∂Z≤60uk−1||∂Z≤60uk | dx dt

� (I Vk−1 + I I Ik−1)
2 I Ik−1 I Ik

+ log〈T 〉(log〈T 〉V I I Ik−1 + V I Ik−1)
2 I Ik−1 I Ik . (4.38)

The combination of (4.35), (4.36), (4.37), and (4.38) then establishes that

sup
U

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1h
I ,αβ

J̃
∂α∂β Z

≤60u J̃
k dx dt

∣∣∣
� (log〈T 〉)3M3

k−1Mk . (4.39)

We now turn our attention to

sup
U

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1�h Z
≤60uI

k dx dt
∣∣∣.

We shall first show

sup
U

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1

(
�h Z

≤60uI
k − aI ,β

J̃ K̃
ωβu

J̃
k−1(∂t − ∂r )Z

≤60uK̃k−1

)
dx dt

∣∣∣
� (log〈T 〉)5M4

k−1 + (log〈T 〉)5M3
k−1Mk . (4.40)

By (4.20), we have

sup
U

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1

×
(
�h Z

≤60uI
k − aI ,β

J̃ K̃
ωβu

J̃
k−1(∂t − ∂r )Z

≤60uK̃k−1

)
dx dt

∣∣∣
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�
T∫

0

∫
r |uk−1||Z≤60uk−1||Z≤30uk−1||
∂Z≤60uk−1| dx dt

+
T∫

0

∫
r |uk−1||Z≤60uk−1||∂Z≤30uk−1||∂≤1Z≤60uk−1| dx dt

+
T∫

0

∫
r |uk−1||Z≤60uk−1||∂Z≤31uk ||∂≤1Z≤60uk−1| dx dt

T∫
0

∫
r |uk−1||Z≤60uk−1||∂≤1Z≤30uk−1||∂2Z≤59uk | dx dt . (4.41)

We note that (3.1) and (3.3) give

‖|uk−1||Z≤60uk−1|‖L2L2(CR
τ )

�
(
‖r−1Z≤4uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤3uk−1‖L2L2(C̃ R

τ )

)
‖r−1Z≤60uk−1‖L2L2(CR

τ )

(4.42)

and (3.2) gives

τ
1
2

U
1
2

‖|uk−1||Z≤60uk−1|‖L2L2(CU
τ )

� 1

τ
1
2U

1
2

(
‖Z≤4uk−1‖L2L2(C̃U

τ )
+ ‖(∂t + ∂r )(r Z

≤3uk−1)‖L2L2(C̃U
τ )

)

× 1

U
1
2 τ

1
2

‖Z≤60uk−1‖L2L2(CU
τ ). (4.43)

Arguing as in (4.21), (4.22), (4.23), and (4.25) where

‖
∂Z≤60uk‖L2L2(CR
τ ),

1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤60uk)‖L2L2(CU

τ )

are replaced by (4.42) and (4.43), respectively, we immediately get (4.40).
To complete the proof of (4.19), we now consider

t∫
0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uK
k−1

(
aI ,β
J̃ K̃

ωβu
J̃
k−1(∂t − ∂r )Z

≤60uK̃
k−1

)
dx dt

= 1

2

t∫
0

∫
re−σU (t−r)uJ

k−1u
J̃
k−1(∂t − ∂r )

[
aI ,α
J Kωαa

I ,β
J̃ K̃

ωβ Z
≤60uK

k−1Z
≤60uK̃

k−1

]
dx dt .
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Integration by parts shows that

sup
U

sup
t∈[0,T ]

∣∣∣
t∫

0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1

(
aI ,β
J̃ K̃

ωβu
J̃
k−1(∂t − ∂r )Z

≤60uK̃k−1

)
dx dt

∣∣∣
� sup

t∈[0,T ]

∫
r |uk−1|2|Z≤60uk−1|2 dx +

T∫
0

∫
r

〈t − r〉 |uk−1|2|Z≤60uk−1|2 dx dt

+
∫ T

0

∫
|uk−1|2|Z≤60uk−1|2 dx dt +

T∫
0

∫
r |uk−1||∂uk−1||Z≤60uk−1|2 dx dt .

(4.44)

For the first term, we first consider a fixed t and set τ ≈ t . Then by (3.1) (and
(3.3)),∫
AR

r |uk−1|2|Z≤60uk−1|2 dx �
(
‖r−1Z≤4uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤3uk−1‖L2L2(C̃ R

τ )

)2

‖r− 1
2 Z≤60uk−1(t, · )‖2L2 ,

and by (3.2)

∫
〈t−r〉≈U

r |uk−1|2|Z≤60uk−1|2 dx

�
( 1

U
1
2 τ

1
2

‖Z≤4uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )r Z
≤3uk−1‖L2L2(C̃U

τ )

)2
×‖r− 1

2 Z≤60uk−1(t, · )‖2L2({〈t−r〉≈U }).

Upon summing over R ≤ τ/2, U ≤ τ/4 and then taking a supremum in t , we obtain

sup
t∈[0,T ]

∫
r |uk−1|2|Z≤60uk−1|2 dx � (I Vk−1 + I I Ik−1)

2V I 2k−1

+(log〈T 〉V I I Ik−1 + V I Ik−1)
2V I 2k−1. (4.45)

For the second term in the right of (4.44), subsequently applying (3.1) (and (3.3))
and (3.2) when R ≤ τ/2, U ≤ τ/4 gives
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∫ ∫
CR

τ

r

〈t − r〉 |uk−1|2|Z≤60uk−1|2 dx dt

�
(
‖r−1Z≤4uk−1‖L2L2(C̃ R

τ )
+ ‖
∂Z≤3uk−1‖L2L2(C̃ R

τ )

)2
×‖r−1Z≤60uk−1‖2L2L2(CR

τ )
(4.46)

and

∫ ∫
CU

τ

r

〈t − r〉 |uk−1|2|Z≤60uk−1|2 dx dt

�
( 1

U
1
2 τ

1
2

‖Z≤4uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤3uk−1)‖L2L2(C̃U

τ )

)2
×

( 1

U
1
2 τ

1
2

‖Z≤60uk−1‖L2L2(CU
τ )

)2
.

Upon summing, we obtain

T∫
0

∫
r

〈t − r〉 |uk−1|2|Z≤60uk−1|2 dx dt � (I Vk−1 + I I Ik−1)
2 I V 2

k−1

+(log〈T 〉)3
(
log〈T 〉V I I Ik−1 + V I Ik−1

)2
V I I I 2k−1. (4.47)

Moreover,

∫ ∫
CU

τ

|uk−1|2|Z≤60uk−1|2 dx dt

�
( 1

U
1
2 τ

1
2

‖Z≤4uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤3uk−1)‖L2L2(C̃U

τ )

)2
×‖r−1Z≤60uk−1‖2L2L2(CU

τ )
.

Hence when combined with (4.46), this gives

T∫
0

∫
|uk−1|2|Z≤60uk−1|2 dx dt � (I Vk−1 + I I Ik−1)

2 I V 2
k−1 +

(
log〈T 〉V I I Ik−1

+V I Ik−1

)2
I V 2

k−1. (4.48)
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Wemay use the estimate on the second term in the right side of (4.41) to bound the
last term in (4.44). Combining this with (4.45), (4.47), and (4.48) then yields

sup
U

sup
t∈[0,T ]

∣∣∣∫ t

0

∫
re−σU (t−r)aI ,α

J Kωαu
J
k−1Z

≤60uKk−1(
aI ,β
J̃ K̃

ωβu
J̃
k−1(∂t − ∂r )Z

≤60uK̃k−1

)
dx dt

∣∣∣
� (log〈T 〉)5M4

k−1,

which completes the proof of (4.19).
To finish the proof of (4.16), we consider the remainder of the terms in the right

side of (2.9) and show that they are each controlled by (4.17).
By (3.1) and (3.3),

∫ ∫
CR

τ

(
|∂Z≤1uk−1| + |Z≤1uk−1|

r

)
|∂Z≤60uk ||(∂t + ∂r )(r Z

≤60uk)| dx dt

�
(
‖r−1Z≤5uk−1‖L2L2(C̃ R

τ )
+ ‖∂Z≤5uk−1‖L2L2(C̃ R

τ )
+ R‖
∂∂Z≤4uk−1‖L2L2(C̃ R

τ )

)
×‖r−1∂Z≤60uk‖L2L2(CR

τ )

(
‖
∂Z≤60uk‖L2L2(CR

τ ) + ‖r−1Z≤60uk‖L2L2(CR
τ )

)
.

And by (3.2),

∫ ∫
CU

τ

(
|∂Z≤1uk−1| + |Z≤1uk−1|

r

)
|∂Z≤60uk ||(∂t + ∂r )(r Z

≤60uk)| dx dt

�
(
‖r−1Z≤5uk−1‖L2L2(C̃U

τ )
+ U

1
2

τ
1
2

‖∂Z≤5uk−1‖L2L2(C̃U
τ )

+U
1
2 τ

1
2 ‖
∂∂Z≤4uk−1‖L2L2(C̃U

τ )

)
× 1

U
1
2

‖〈r〉− 1
2 ∂Z≤60uk‖L2L2(CU

τ )

1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤60uk)‖L2L2(CU

τ ).

Upon summing over R ≤ τ/2, U ≤ τ/4 and τ ≤ T , we get

T∫
0

∫ (
|∂Z≤1uk−1| + |Z≤1uk−1|

r

)
|∂Z≤60uk ||(∂t + ∂r )(r Z

≤60uk)| dx dt

� (I Vk−1 + I Xk−1 + Xk−1)I Ik(I I Ik + I Vk)

+
(
I Vk−1 + log〈T 〉X Ik−1 + log〈T 〉X I Ik−1

)
I IkV I Ik . (4.49)
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For the fifth term in the right side of (2.9), applying (3.7) and the Schwarz inequality,
we have

T∫
0

∫
|∂≤1uk−1||∂Z≤60uk |

(
|
∇Z≤60uk | + |Z≤60uk |

r

)
dx dt

� ‖〈r〉−1Z≤3uk−1‖L2L2‖∂Z≤60uk‖L∞L2

(
‖
∇Z≤60uk‖L2L2 + ‖r−1Z≤60uk‖L2L2

)
� I Vk−1 Ik(I I Ik + I Vk). (4.50)

And for the sixth term, using (3.7),

∫ T

0

∫
〈t − r〉−1|∂≤1uk−1||∂Z≤60uk ||(∂t + ∂r )(r Z

≤60uk)| dx dt

� log〈T 〉
(
sup
U

‖〈r〉− 1
2 〈t − r〉− 1

2 Z≤3uk−1‖L2L2(XU )

)
‖∂Z≤60uk‖L∞L2

× sup
U

(
‖〈r〉− 1

2 〈t − r〉− 1
2 (∂t + ∂r )(r Z

≤60uk)‖L2L2(XU )

)
� (log〈T 〉)2V I I Ik−1 · Ik · V I Ik .

(4.51)

For the seventh term in (2.9), we apply (3.1) (and (3.3)), which yields

∫ ∫
CR

τ

r
(
|(∂t + ∂r )∂

≤1uk−1| + |∂≤1uk−1|
r

)
|∂Z≤60uk |2 dx dt

�
(
‖
∂Z≤5uk−1‖L2L2(C̃ R

τ )
+ R‖
∂∂Z≤4uk−1‖L2L2(C̃ R

τ )
+ ‖r−1Z≤5uk−1‖L2L2(C̃ R

τ )

)
×‖〈r〉− 1

2 ∂Z≤60uk‖2L2L2(CR
τ )

.

On theCU
τ regions, in addition to (3.2), wewill also apply (3.6) to the term that already

contains a good derivative, which gives

∫ ∫
CU

τ

r
(
|(∂t + ∂r )∂

≤1uk−1| + |∂≤1uk−1|
r

)
|∂Z≤60uk |2 dx dt

�
( 1

U
1
2 τ

1
2

‖Z≤5uk−1‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖(∂t + ∂r )(r Z
≤4uk−1)‖L2L2(C̃U

τ )

+U
1
2

τ
1
2

‖∂(∂t + ∂r )(r Z
≤4uk−1)‖L2L2(C̃U

τ )

)
×‖〈r〉− 1

2 ∂Z≤60uk‖2L2L2(CU
τ )

.
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Using (1.9), note that

U
1
2

τ
1
2

‖∂(∂t + ∂r )(r Z
≤4uk−1)‖L2L2(C̃U

τ )

� U
1
2

τ
1
2

‖∂Z≤4uk−1‖L2L2(C̃U
τ )

+U
1
2 τ

1
2 ‖
∂∂Z≤4uk−1‖L2L2(C̃U

τ )
.

Thus, upon summing and using (4.12), we obtain

∫ T

0

∫
r
(
|(∂t + ∂r )∂

≤1uk−1| + |∂≤1uk−1|
r

)
|∂Z≤60uk |2 dx dt

� (I I Ik−1 + Xk−1 + I Vk−1)(log〈T 〉) 1
2 I I 2k

+
[
V I Ik−1 + (log〈T 〉)

(
V I I Ik−1 + X Ik−1 + X I Ik−1

)]
log〈T 〉I I 2k .

(4.52)

The desired bound (4.16) now follows from (2.9) and the application of (1.5),
(4.18), (4.19), (4.49), (4.50), (4.51), (4.52), and (4.6).
[IXk]: As R < τ/2 on each CR

τ , (3.5) allows us to see that

I X2
k �

∑
τ≤T

∑
R≤τ/4

( 1

R2 ‖Z≤51uk‖2L2L2(C̃ R
τ )

+ ‖
∂Z≤50uk‖2L2L2(C̃ R
τ )

)
� I I I 2k + I V 2

k .

(4.53)

And, thus, the appropriate bound is a consequence of (4.16).
[Xk]: Using (1.8) and (3.5), when R < τ/2, we see that

R‖
∂∂Z≤40uk‖L2L2(C̃ R
τ )

� ‖∂Z≤41uk‖L2L2(C̃ R
τ )

+ R‖(∂t + ∂r )(∂t − ∂r )Z
≤40uk‖L2L2(C̃ R

τ )

� ‖∂Z≤41uk‖L2L2(C̃ R
τ )

+ R‖�Z≤40uk‖L2L2(C̃ R
τ )

.

(4.54)

On C̃ R
τ , (4.54) is akin to the bounds of [10] and [22]. We note that

|�Z≤40uk | �
(
|∂Z≤20uk−1| + |∂Z≤21uk |

)
|Z≤41uk−1|

+|Z≤21uk−1|
(
|∂Z≤40uk−1| + |∂Z≤41uk |

)
. (4.55)

Applying (3.1), we obtain

R‖Z≤40�uk‖L2L2(C̃ R
τ )

� R−1‖Z≤41uk−1‖L2L2(C̃ R
τ )(

‖∂Z≤24uk−1‖
L2L2(

˜̃CR

τ )
+ R‖
∂∂Z≤23uk−1‖

L2L2(
˜̃CR

τ )

)
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+R−1‖Z≤41uk−1‖L2L2(C̃ R
τ )

(
‖∂Z≤25uk‖

L2L2(
˜̃CR

τ )
+ R‖
∂∂Z≤24uk‖

L2L2(
˜̃CR

τ )

)
+

(
R−1‖Z≤25uk−1‖

L2L2(
˜̃CR

τ )
+ ‖
∂Z≤24uk−1‖

L2L2(
˜̃CR

τ )

)
×

(
‖∂Z≤40uk−1‖L2L2(C̃ R

τ )
+ ‖∂Z≤41uk‖L2L2(C̃ R

τ )

)
.

Combining this with (4.54), we see that

Xk � I Xk + I Vk−1

(
I Xk−1 + Xk−1 + log〈T 〉(X Ik−1 + X I Ik−1)

)
+I Vk−1

(
I Xk + Xk + log〈T 〉(X Ik + X I Ik)

)
+

(
I Vk−1 + I I Ik−1

)(
I Xk−1 + I Xk

)
. (4.56)

We note that the occurrences of terms X I and X I I are due to the enlargement of C̃ R
τ

when R = τ/4 and R = τ/2. The tails here can be bounded using the CU
τ terms when

U = τ/4. By (4.16), these terms are also bounded by the right side of (4.3).
[XIk]: For U = 1, we have an immediate bound

∑
τ

1

τ(log〈τ 〉)2 ‖∂Z≤50uk‖2L2L2(C̃U=1
τ )

�
∑
τ

1

(log〈τ 〉)2 ‖∂Z≤50uk‖2L∞
t L2

x
≤ I 2k .

For U > 1, we can refer to (1.8) and (3.5) to see that

U
1
2

τ
1
2 log〈τ 〉

‖∂Z≤50uk‖L2L2(C̃U
τ )

≤ ‖r− 1
2 〈t − r〉− 1

2 (log〈r〉)−1Z≤51uk‖L2L2(C̃U
τ )

+‖r− 1
2 〈t − r〉− 1

2 (∂t + ∂r )(r Z
≤50uk)‖L2L2(C̃U

τ )
.

And thus,

X Ik � Ik + V I I Ik + V I Ik . (4.57)

Then (4.6) and (4.16) give the boundedness in terms of the right side of (4.3).
[XIIk]: Using (1.8), we first note that

∑
τ

τ

(log〈τ 〉)2 ‖
∂∂Z≤40uk‖2L2L2(C̃U=1
τ )

�
∑
τ

1

τ(log〈τ 〉)2
(
‖Z≤42uk‖2L2L2(C̃U=1

τ )

+ ‖(∂t + ∂r )(r Z
≤41uk)‖2L2L2(C̃U=1

τ )

)
� V I I I 2k + V I I 2k .
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And for 1 < U ≤ τ/4, (1.8) and (3.5) give

U
1
2 τ

1
2 ‖
∂∂Z≤40uk‖L2L2(C̃U

τ )
� U

1
2

τ
1
2

‖∂Z≤41uk‖L2L2(C̃U
τ )

+U
1
2 τ

1
2 ‖(∂t + ∂r )(∂t − ∂r )Z

≤40uk‖L2L2(C̃U
τ )

� U
1
2

τ
1
2

‖∂Z≤41uk‖L2L2(C̃U
τ )

+U
1
2 τ

1
2 ‖�Z≤40uk‖L2L2(C̃U

τ )
.

Applying (3.2) to the lower order terms of (4.55) gives

U
1
2 τ

1
2 ‖�Z≤40uk‖L2L2(C̃U

τ )

� 1

U
1
2 τ

1
2

‖Z≤41uk−1‖L2L2(C̃U
τ )

(U 1
2

τ
1
2

‖∂Z≤24uk−1‖
L2L2(

˜̃CU

τ )

+U
1
2 τ

1
2 ‖
∂∂Z≤23uk−1‖

L2L2(
˜̃CU

τ )

)

+ 1

U
1
2 τ

1
2

‖Z≤41uk−1‖L2L2(C̃U
τ )

(U 1
2

τ
1
2

‖∂Z≤25uk‖
L2L2(

˜̃CU

τ )

+U
1
2 τ

1
2 ‖
∂∂Z≤24uk‖

L2L2(
˜̃CU

τ )

)

+ 1

U
1
2 τ

1
2

(
‖Z≤25uk−1‖

L2L2(
˜̃CU

τ )
+ ‖(∂t + ∂r )(r Z

≤24uk−1)‖
L2L2(

˜̃CU

τ )

)

×U
1
2

τ
1
2

(
‖∂Z≤40uk−1‖L2L2(C̃U

τ )
+ ‖∂Z≤41uk‖L2L2(C̃U

τ )

)
.

From this, it follows that

X I Ik � V I I Ik + V I Ik + X Ik + V I I Ik−1(
I Xk−1 + Xk−1 + log〈T 〉

(
X Ik−1 + X I Ik−1

))
+V I I Ik−1

(
I Xk + Xk + log〈T 〉

(
X Ik + X I Ik

))
+

(
log〈T 〉V I I Ik−1 + V I Ik−1

)(
X Ik−1 + X Ik

)
. (4.58)

The proof of (4.3) is now complete as we can apply (4.16) and (4.57).

4.2 Convergence

We now conclude the proof by showing that the sequence is Cauchy. This is somewhat
simplified by the extremely high regularity that was used in the preceding subsection.
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We set

Ak = ‖∂Z≤20(uk − uk−1)‖L∞L2 + ‖Z≤20(uk − uk−1)‖LE1 , (4.59)

and we shall show that for each k,

Ak ≤ 1

2
Ak−1, (4.60)

which suffices to complete the proof.
We use that

�uk − �uk−1 = aI ,α
J K (uJ

k−1 − uJ
k−2)∂αu

K
k−1 + aI ,α

J K u
J
k−2∂α(uKk−1 − uKk−2)

+bI ,αβ
J K ∂α(uJ

k−1 − uJ
k−2)∂βu

K
k−1 + bI ,αβ

J K ∂αu
J
k−2∂β(uKk−1 − uKk−2)

+AI ,αβ
J K uKk−1∂α∂β(uJ

k − uJ
k−1) + AI ,αβ

J K (uKk−1 − uKk−2)∂α∂βu
J
k−1

+BI ,αβγ

J K ∂γ u
K
k−1∂α∂β(uJ

k − uJ
k−1) + BI ,αβγ

J K ∂γ (uKk−1 − uKk−2)∂α∂βu
J
k−1.

(4.61)

With h as in (4.5), we apply (2.2). Arguing as in (4.9), though we need not take as
much care to distinguish the lower order terms from the higher order terms, this gives
that

A2
k �

T∫
0

∫
|∂≤1Z≤20(uk−1 − uk−2)||∂Z≤21uk−1|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt

+
T∫

0

∫
|∂≤1Z≤20uk−2||∂Z≤20(uk−1 − uk−2)|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt

+
T∫

0

∫
|∂≤1Z≤20uk−1||∂Z≤20(uk − uk−1)|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt . (4.62)

Applying (3.1) and (3.3), we obtain

123



La Matematica (2023) 2:37–84 81

∫ ∫
CR

τ

|∂≤1Z≤20(uk−1 − uk−2)||∂Z≤21uk−1|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt

�
(
‖∂Z≤25uk−1‖L2L2(C̃ R

τ )
+ R‖
∂∂Z≤24uk−1‖L2L2(C̃ R

τ )

)
‖〈r〉− 3

2 ∂≤1Z≤20(uk−1 − uk−2)‖L2L2(CR
τ )

×
(
‖〈r〉− 1

2 ∂Z≤20(uk − uk−1)‖L2L2(CR
τ ) + ‖〈r〉− 1

2 r−1Z≤20(uk − uk−1)‖L2L2(CR
τ )

)
.

And (3.2) gives
∫ ∫

CU
τ

|∂≤1Z≤20(uk−1 − uk−2)||∂Z≤21uk−1|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt

� U
1
2

τ
1
2

(
‖∂Z≤25uk−1‖L2L2(C̃U

τ )
+ τ‖
∂∂Z≤24uk−1‖L2L2(C̃U

τ )

)
‖〈t − r〉−1〈r〉− 1

2 ∂≤1Z≤20(uk−1 − uk−2)‖L2L2(CU
τ )

×
(
‖〈r〉− 1

2 ∂Z≤20(uk − uk−1)‖L2L2(CU
τ ) + ‖〈r〉− 1

2 r−1Z≤20(uk − uk−1)‖L2L2(CU
τ )

)
.

We may use (2.11) and (4.12) to see that

‖〈t − r〉−1〈r〉− 1
2 ∂≤1Z≤20(uk−1 − uk−2)‖L2L2

� (log〈T 〉) 1
2 ‖Z≤20(uk−1 − uk−2)‖LE1 .

Thus, upon summing over R ≤ τ/2, U ≤ τ/4 and τ ≤ T , we see that

T∫
0

∫
|∂≤1Z≤20(uk−1 − uk−2)||∂Z≤21uk−1|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt

� (log〈T 〉)2Mk−1Ak−1Ak . (4.63)

Applying (3.1) (and (3.3)) and (3.2), respectively, gives
∫ ∫

CR
τ

|∂≤1Z≤20uk−2||∂Z≤20(uk−1 − uk−2)|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt

�
(
‖r−1Z≤25uk−2‖L2L2(C̃ R

τ )
+ ‖
∂Z≤24uk−2‖L2L2(C̃ R

τ )

)
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‖〈r〉− 1
2 ∂Z≤20(uk−1 − uk−2)‖L2L2(CR

τ )

×
(
‖〈r〉− 1

2 ∂Z≤20(uk − uk−1)‖L2L2(CR
τ ) + ‖〈r〉− 1

2 r−1Z≤20(uk − uk−1)‖L2L2(CR
τ )

)

and

∫ ∫
CU

τ

|∂≤1Z≤20uk−2||∂Z≤20(uk−1 − uk−2)|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt

� 1

U
1
2 τ

1
2

(
‖Z≤25uk−2‖L2L2(C̃U

τ )
+ ‖(∂t + ∂r )(r Z

≤24uk−2)‖L2L2(C̃U
τ )

)
‖〈r〉− 1

2 ∂Z≤20(uk−1 − uk−2)‖L2L2(CU
τ )

×
(
‖〈r〉− 1

2 ∂Z≤20(uk − uk−1)‖L2L2(CU
τ ) + ‖〈r〉− 1

2 r−1Z≤20(uk − uk−1)‖L2L2(CU
τ )

)
,

which, using (4.12), imply

T∫
0

∫
|∂≤1Z≤20uk−2||∂Z≤20(uk−1 − uk−2)|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt

� (log〈T 〉)2Mk−2Ak−1Ak . (4.64)

The third term in (4.62) is very much of the same from as the preceding term, and
the exact same arguments yield

T∫
0

∫
|∂≤1Z≤20uk−1||∂Z≤20(uk − uk−1)|

(
|∂Z≤20(uk − uk−1)| + |Z≤20(uk − uk−1)|

r

)
dx dt

� (log〈T 〉)2Mk−1A
2
k . (4.65)

It now follows from (4.62), (4.63), (4.64), and (4.65) that

A2
k � (log〈T 〉)2(Mk−1 + Mk−2)Ak−1Ak + (log〈T 〉)2Mk−1A

2
k .

Using (4.3) and (1.6), provided c � 1, we may bootstrap and obtain

A2
k � c4ε

2
3 A2

k−1.
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Thus, for ε sufficiently small, we recover (4.60), which implies that the sequence is
Cauchy and thus convergent. This completes the proof.
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