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Abstract. In this article, we revisit the proof of small data global existence for semilinear wave equations

that satisfy a null condition. This new approach relies on a weighted local energy estimate that is akin to

those of Dafermos and Rodnianski. Using weighted Sobolev estimates to obtain spatial decay and arguing
in the spirit of the work of Keel, Smith, and Sogge, we are able to obtain global existence while only relying

on translational and (spatial) rotational symmetries.

1. Introduction

We shall examine systems of semilinear wave equations in (1 + 3)-dimensions of the form

(1.1)

{
2uI := (∂2t −∆)uI = QI(∂u), (t, x) ∈ R+ × R3, I = 1, 2, . . . ,M,

uI(0, · ) = f I , ∂tu
I(0, · ) = gI .

Here ∂u = (∂tu,∇u) is the space-time gradient, and each component QI is a smooth function that vanishes
to second order at the origin. As we shall only consider small data, the long-time behavior is dictated by
the lowest order terms, and as such, we will truncate Q to the quadratic level.

As the linear wave equation decays like t−(n−1)/2 in n-spatial dimensions and as this factor is integrable
at infinity when n ≥ 4, it has long been known that global existence of solutions to (1.1) for sufficiently
small initial data is guaranteed in these dimensions. When n = 3, however, a logarithmic blow up is
instead encountered, and only almost global existence, which states that the lifespan of the solution grows
exponentially as the size of the initial data shrinks, is available generically. See, e.g., [20].

When the nonlinearity is assumed to satisfy a null condition, it was discovered in [2] and [7] that sufficiently
small initial data always produce global solutions in three dimensions. In the current setting, assuming that
our quadratic nonlinearity is of the form

QI(∂u) = Aαβ,IJK ∂αu
J∂βu

K ,

the null condition requires that

(1.2) Aαβ,IJK ξαξβ = 0, when ξ20 − ξ21 − ξ22 − ξ23 = 0.

Here we are using the summation convention with α, β running from 0 to 3 and the common conventions
that ∂0u = ∂tu, ∂ju = ∂xj

u. We are also allowing repeated capital indices to sum from 1 to M .
A common approach for establishing such long-time existence results relies on the method of invariant

vector fields and the Klainerman-Sobolev inequality [8]. Due to the unbounded normal component on the
boundary, the Lorentz boosts xk∂t + t∂k are inappropriate when studying such nonlinear equations, say,
exterior to a compact obstacle with Dirichlet boundary conditions. In response, [5] developed a method of
establishing long-time existence for three dimensional semilinear wave equations that only relies upon the
generators of translations and spatial rotations:

Ωij = xi∂j − xj∂i, Z = (∂1, ∂2, ∂3,Ω23,Ω13,Ω12).

Here the authors depended on the integrated local energy estimate, which will be introduced in Section 2,
and a weighted Sobolev estimate [7] that provided decay in |x| rather than t but only requires the vector
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fields Z. This method was adapted to the quasilinear setting in [13] by exploring local energy estimates
for perturbations of the d’Alembertian. The desire for a method that did not necessitate the use of the
Lorentz boosts was also motivated by wanting to understand multiple speed systems of wave equations and
the equations of elasticity. See, e.g., [9], [18].

In the current article we shall explore small data global existence for null form wave equations. Many
approaches exist for establishing such global existence. See, e.g., [7], [2], [19], [14], [4], [10]. Unlike many of
the preceding results, our method shall only rely on the time-independent vector fields Z.

The key to our argument is to replace the use of the local energy estimate with a variant, specifically
a type of rp-weighted local energy estimate of [3]. See [17] for some generalizations of this method. This
estimate has been applied in a number of nonlinear settings such as [12], [22, 23], [6] . Typically it is used
to derive decay in t. Such decay is then used to control the integral within the energy inequality and thus
provides long-time existence. We believe our approach to be more straightforward, though those preceding
results were all in much more complicated settings.

The rp-weighted local energy estimate only controls the “good” derivatives 6∂ = (∂t + ∂r, 6∇) where
6∇ = ∇ − x

r ∂r are the angular derivatives. These are the directions that are tangent to the light cone and
for which better decay is known. The rp-weighted estimate is particularly well-suited to null form wave
equations as the algebraic cancelation condition (1.2) precisely guarantees that in each quadratic term of
Q(∂u) one of the two factors is a good derivative.

Our main result is:

Theorem 1.1. Suppose that f, g ∈ (C∞(R3))M . And let 0 < p < 1. Then for any ε > 0 sufficiently small,
if

(1.3) ‖(1 + r)p/2Z≤10f‖L2(R3) + ‖(1 + r)p/2Z≤9g‖L2(R3) ≤ ε,

then (1.1) with nonlinearity satisfying (1.2) has a unique global solution u ∈ C∞(R+ × R3).

Here, and throughout, we shall use the abbreviation Z≤Nu =
∑
|α|≤N Z

αu.

In this short article, to keep the exposition as accessible as possible, we have only focused on semilinear
equations on Minkowski space. We expect that the argument can readily be extended to, e.g., quasilinear
equations and equations on exterior domains, and these topics will be explored subsequently.

Our proof of Theorem 1.1 most resembles [10]. There an alternate local energy estimate that relies upon
t− r weights, which is from [11] and [1], was used. In order to achieve the decay in t− r, the authors called
upon decay estimates of [9], but these in turn required the use of the time-dependent vector fields. The
current argument is much more directly reminiscent of [5].

2. Integrated local energy estimates

The integrated local energy estimate first appeared in [16]. Through subsequent refinements, on R+×Rn,
n ≥ 3, we know that

(2.1) ‖∂u‖2L∞t L2
x

+ sup
R≥1

R−1‖∂u‖2L2
tL

2
x(R+×{〈x〉≈R}) + sup

R≥1
R−3‖u‖2L2

tL
2
x(R+×{〈x〉≈R})

. ‖∂u(0, · )‖2L2 +

∫ ∞
0

∫
|2u|

(
|∂u|+ 〈x〉−1|u|

)
dx dt.

The most robust proof of this estimate pairs the equation 2u with a multiplier of the form C∂tu+ r
r+R∂ru+

n−1
2

1
r+Ru and follows from integration by parts. See, e.g., [21] and [13]. Related estimates are known to

hold for stationary, non-trapping perturbations and for sufficiently small non-stationary perturbations. See
[15] for a more complete history and the most general results in the non-trapping setting.

Our first task will be to prove the following rp-weighted estimate, which first appeared in [3].

Proposition 2.1. Suppose u ∈ C∞(R+×R3) and that for every T there is R so that u(t, x) = 0 for t ∈ [0, T ]
and |x| > R. Then, for 0 < p < 1,

(2.2) ‖r
p−1
2 6∂u‖2L2

tL
2
x

+ ‖r
p−3
2 u‖2L2

tL
2
x

+ sup
t
Ẽ[u](t) . Ẽ[u](0) + ‖r

p+1
2 2u‖2L2

tL
2
x
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where

Ẽ[u](t) =
1

2

∫
rp−2|6∂(ru(t, x))|2 dx+

p

2

∫
rp−2u2(t, x) dx.

The local energy estimate (2.1) has an `∞-summation over the annuli, which we may take to be dyadic, in
the left side. In [5], the difference between this and having `2-summability accounts for a logarithm, which
in turn corresponds to the exponential within the notion of almost global existence. While restricted only
to the good directions, the above estimate has the desired `2-summability, and as such, it will yield global
existence so long as the equation permits its application on each term, which the null condition exactly
provides.

Proof. For any 0 ≤ p ≤ 2, we first consider∫ T

0

∫
2u · rp

(
∂tu+ ∂ru+

1

r
u
)
dx dt =

∫ T

0

∫ ∫
rp
(
∂2t − ∂2r − 6∇ · 6∇

)
(ru)

(
∂t + ∂r

)
(ru) dσ dr dt.

Using integration by parts and the fact that [6∇, ∂r] = 1
r 6∇, the right side is

=
1

2

∫ T

0

∫ ∫
rp
(
∂t − ∂r

)[(
∂t + ∂r

)
(ru)

]2
dσ dr dt+

1

2

∫ T

0

∫ ∫
rp
(
∂t + ∂r

)
|6∇(ru)|2 dσ dr dt

+

∫ T

0

∫ ∫
rp−1|6∇(ru)|2 dσ dr dt.

Further integrating by parts yields

(2.3)

∫ T

0

∫
2u · rp

(
∂tu+ ∂ru+

1

r
u
)
dx dt =

1

2

∫ ∫
rp
{[(

∂t + ∂r

)
(ru)

]2
+ |6∇(ru)|2

}
dσ dr

∣∣∣T
t=0

+
p

2

∫ T

0

∫ ∫
rp−1

[(
∂t + ∂r

)
(ru)

]2
dσ dr dt+

(
1− p

2

)∫ T

0

∫ ∫
rp−1|6∇(ru)|2 dσ dr dt.

For simplicity, we now restrict to 0 ≤ p < 1. We then observe that

p

2

∫ T

0

∫ ∫
rp−1

[(
∂t + ∂r

)
(ru)

]2
dσ dr dt =

p

2

∫ T

0

∫
rp−1

(
∂tu+ ∂ru

)2
r2 dσ dr dt

+
p

2

∫ T

0

∫ ∫
rp
(
∂t + ∂r

)
u2 dσ dr dt+

p

2

∫ T

0

∫
rp−1u2 dσ dr dt,

which upon a last integration by parts and reverting back to rectangular coordinates gives

p

2

∫
rp−2u2 dx

∣∣∣T
t=0

+
p

2

∫ T

0

∫
rp−1

(
∂tu+ ∂ru

)2
dx dt+

p(1− p)
2

∫ T

0

∫
rp−3u2 dx dt.

Making this replacement in (2.3) and applying the Schwarz inequality gives

p

2
‖r

p−1
2 (∂t + ∂r)u‖2L2

tL
2
x

+
2− p

2
‖r

p−1
2 6∇u‖2L2

tL
2
x

+
p(1− p)

2
‖r

p−3
2 u‖2L2

tL
2
x

+ Ẽ[u](T )

≤ Ẽ[u](0) + ‖r
p+1
2 2u‖L2

tL
2
x

(
‖r

p−1
2 (∂t + ∂r)u‖L2

tL
2
x

+ ‖r
p−3
2 u‖L2

tL
2
x

)
.

Bootstrapping the last factor of the last term completes the proof. We moreover note that the implicit
constant is independent of T , and thus we may take the supremum over all T to obtain (2.2). �

In the sequel, we shall require a version of (2.2) that permits the application of the invariant vector fields,
which is presented in the next proposition.

Proposition 2.2. Let 0 < p < 1 and fix any N ∈ N. Suppose u ∈ C∞(R+×R3) and that for every T , there
is R so that u(t, x) = 0 for t ∈ [0, T ] and |x| > R. Then,

(2.4) ‖Z≤N∂u‖2L∞t L2
x

+ ‖(1 + r)
p−1
2 Z≤N 6∂u‖2L2

tL
2
x

+ ‖(1 + r)
p−3
2 Z≤Nu‖2L2

tL
2
x

. ‖(1 + r)
p
2Z≤N∂u(0, · )‖2L2 + ‖(1 + r)

p+1
2 Z≤N2u‖2L2

tL
2
x
.
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Proof. We first note that∫ ∞
0

∫
|2u|

(
|∂u|+ 〈x〉−1|u|

)
dx dt ≤ ‖(1 + r)

p+1
2 2u‖L2

tL
2
x

(
‖(1 + r)

−p−1
2 ∂u‖L2

tL
2
x

+ ‖(1 + r)
−p−3

2 u‖L2
tL

2
x

)
,

and that

‖(1 + r)
−p−1

2 ∂u‖L2
tL

2
x

+ ‖(1 + r)
−p−3

2 u‖L2
tL

2
x

. sup
j≥0

2−j/2‖∂u‖L2
tL

2
x(R+×{〈x〉≈2j}) + sup

j≥0
2−3j/2‖u‖L2

tL
2
x(R+×{〈x〉≈2j}).

Thus, by bootstrapping this factor into the left side of (2.1), we see from (2.1) that

‖∂u‖L∞t L2
x
. ‖∂u(0, · )‖L2 + ‖(1 + r)

p+1
2 2u‖L2

tL
2
x
.

Since [2, Z] = 0 and since [Z, ∂] ∈ span(∂), the bound for the first term in (2.4) follows by replacing u by
Z≤Nu.

Since

[∂i, ∂t + ∂r] =
1

r
6∇i, [∂i, 6∇j ] =

1

r

(
−δij +

xixj
r2

)
∂r −

1

r

xj
r
6∇i,

[Ωij , 6∇k] = δjk 6∇i − δik 6∇j , [Ωij , ∂t + ∂r] = 0

and since |6∇u| ≤ 1
r |Ωu|, we have that |[Z, 6∂]u| ≤ 1

r |Zu|. Thus the remainder of the proof follows upon

replacing u by Z≤Nu in (2.2). We may readily replace r by 1 + r in the L2
tL

2
x terms since the powers in the

left are negative while powers in the right are positive. We also note that, due to a Hardy-type inequality,

Ẽ[u](t) . ‖(1 + r)
p
2 ∂u(t, · )‖2L2 .

�

3. Proof of Theorem 1.1

The decay that we require will be obtained from the following weighted Sobolev estimate of [7]. This
estimate only provides decay in |x|, but simultaneously it does not necessitate the use of any time dependent
vector fields.

Lemma 3.1. For h ∈ C∞(R3) and R ≥ 1,

(3.1) ‖h‖L∞({R/2<〈x〉<R}) . R
−1‖Z≤2h‖L2({R/4<〈x〉<2R}).

The bound (3.1) follows, after localizing appropriately, from applying Sobolev estimates in the r and ω
variables separately and comparing the volume element dr dσ(ω) with that of R3 in spherical coordinates:
r2 dr dσ(ω).

As mentioned earlier, the null condition (1.2) guarantees that at least one of the two factors in each
nonlinear term is a “good” derivative. In fact, using a product rule argument, we have

(3.2) |Z≤10Q(∂u)| . |Z≤5∂u||Z≤10 6∂u|+ |Z≤5 6∂u||Z≤10∂u|.
This is well known, and we refer the reader to, e.g., [10, Lemma 2.3].

We will use an iteration to solve (1.1). We let u−1 ≡ 0 and let uk solve{
2uk = Q(∂uk−1),

uk(0, · ) = f, ∂tuk(0, · ) = g.

Boundedness: Our first step is to show an appropriate boundedness of this iteration. To this end, we shall
set

Mk = ‖Z≤10∂uk‖L∞t L2
x

+ ‖(1 + r)
p−1
2 Z≤10 6∂uk‖L2

tL
2
x

+ ‖(1 + r)
p−3
2 Z≤10uk‖L2

tL
2
x
.

Due to (2.4) and (1.3), there is a constant C0 so that

M0 ≤ C0ε.

We shall argue inductively that for every k

(3.3) Mk ≤ 2C0ε.
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To show (3.3), we use (2.4), which provides the bound

Mk ≤ C0ε+ C‖(1 + r)
p+1
2 Z≤10Q(∂uk−1)‖L2

tL
2
x
.

Applying (3.2) and (3.1) we obtain

‖(1 + r)
p+1
2 Z≤10Q(∂uk−1)‖L2

tL
2
x

. ‖(1 + r)
p+1
2 |Z≤5∂uk−1||Z≤10 6∂uk−1|‖L2

tL
2
x

+ ‖(1 + r)
p+1
2 |Z≤5 6∂uk−1||Z≤10∂uk−1|‖L2

tL
2
x

. ‖Z≤7∂uk−1‖L∞t L2
x
‖(1 + r)

p−1
2 Z≤10 6∂uk−1‖L2

tL
2
x

+ ‖(1 + r)
p−1
2 Z≤7 6∂uk−1‖L2

tL
2
x
‖Z≤10∂uk−1‖L∞t L2

x
.

Thus, using the inductive hypothesis, it follows that

Mk ≤ C0ε+ C(Mk−1)2 ≤ C0ε+ C · C2
0ε

2.

And if ε < 1
C·C0

, (3.3) results as desired.
Cauchy: We complete the proof by showing that the sequence is Cauchy in an appropriate norm. By

completeness, the sequence must converge and by standard results the limiting function solves (1.1) as
desired.

To this end, we set

Ak = ‖Z≤10∂(uk − uk−1)‖L∞t L2
x

+ ‖(1 + r)
p−1
2 Z≤10 6∂(uk − uk−1)‖L2

tL
2
x

+ ‖(1 + r)
p−3
2 Z≤10(uk − uk−1)‖L2

tL
2
x
.

We note that

QI(∂uk−1)−QI(∂uk−2) = Aαβ,IJK ∂α(uJk−1 − uJk−2)∂βu
K
k−1 +Aαβ,IJK ∂αu

J
k−2∂β(uKk−1 − uKk−2).

Thus, as in (3.2), we obtain

(3.4) |Z≤10Q(∂uk−1)− Z≤10Q(∂uk−2)| . |Z≤5 6∂(uk−1 − uk−2)|
(
|Z≤10∂uk−1|+ |Z≤10∂uk−2|

)
+
(
|Z≤5∂uk−1|+ |Z≤5∂uk−2|

)
|Z≤10 6∂(uk−1 − uk−2)|+ |Z≤5∂(uk−1 − uk−2)|

(
|Z≤10 6∂uk−1|+ |Z≤10 6∂uk−2|

)
+
(
|Z≤5 6∂uk−1|+ |Z≤5 6∂uk−2|

)
|Z≤10∂(uk−1 − uk−2)|.

As above, we apply (3.1) to the lower order factor in each term to see that

‖(1 + r)
p+1
2 (Z≤10Q(∂uk−1)− Z≤10Q(∂uk−2))‖L2

tL
2
x

. ‖(1 + r)
p−1
2 Z≤7 6∂(uk−1 − uk−2)‖L2

tL
2
x

(
‖Z≤10∂uk−1‖L∞t L2

x
+ ‖Z≤10∂uk−2‖L∞t L2

x

)
+
(
‖Z≤7∂uk−1‖L∞t L2

x
+ ‖Z≤7∂uk−2‖L∞t L2

x

)
‖(1 + r)

p−1
2 Z≤10 6∂(uk−1 − uk−2)‖L2

tL
2
x

+ ‖Z≤7∂(uk−1 − uk−2)‖L∞t L2
x

(
‖(1 + r)

p−1
2 Z≤10 6∂uk−1‖L2

tL
2
x

+ ‖(1 + r)
p−1
2 Z≤10 6∂uk−2‖L2

tL
2
x

)
+
(
‖(1 + r)

p−1
2 Z≤7 6∂uk−1‖L2

tL
2
x

+ ‖(1 + r)
p−1
2 Z≤7 6∂uk−2‖L2

tL
2
x

)
‖Z≤10∂(uk−1 − uk−2)‖L∞t L2

x
.

From (2.4) it then follows that

Ak ≤ C
(
Mk−1 +Mk−2

)
Ak−1 ≤ C · C0εAk−1.

So long as, say, ε < 1
2C·C0

, we obtain

Ak ≤
1

2
Ak−1, for all k,

which implies that the sequence is Cauchy and completes the proof.
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