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Abstract
We develop a new method for addressing certain weakly null systems of wave equa-
tions. This approach does not rely on Lorentz invariance nor on the use of null
foliations, both of which restrict applications to, e.g., multiple speed systems. The
proof uses a class of space-time Klainerman-Sobolev estimates of the first author,
Tataru, and Tohaneanu, which pair nicely with local energy estimates that combine
the r p-weighted method of Dafermos and Rodnianski with the ghost weight method
of Alinhac. We further refine the standard local energy estimate with a modification
of the ∂t − ∂r portion of the multiplier.

Keywords Wave equations · Local energy estimates · Weak null condition ·
Global existence

1 Introduction

This article represents a proof of concept for a method of addressing certain systems
of weakly null wave equations that do not satisfy the classical null condition. This
example falls into the class of equations studied in [5]. For simplicity of exposition,
we only consider a semilinear system. Unlike [5], the methods here do not use the
Lorentz boosts, which is important for similar problems in the setting of multiple
speeds, exterior domains, or stationary asymptotically flat background geometry. And
when compared to the methods of [10], which apply to a broader class of weakly null
equations, we believe that our methods are simpler and, as we do not rely on null
foliations, additional applications to multiple speeds systems appear possible. The
current work is most akin to that of [6], which is based on the ideas of [13] and proves
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global existence without the use of the Lorentz boosts, but we believe our method to
have added flexibility for other applications.

In three spatial dimensions, it is known that solutions to semilinear systems of
equations of the form �u = Q(∂u) with nonlinearity that vanishes to second order
at the origin can only be guaranteed to exist almost globally, which means that the
lifespan grows exponentially as the size of the data shrinks. See, e.g., [7] for the lower
bound on the lifespan and [8] and [21] for counterexamples to global existence. Based
on the fact that the components of the space-time gradient ∂u = (∂t u,∇xu) that are
tangent to the light cone decay faster, the null condition was identified in [2] and [11]
as a sufficient condition for guaranteeing small data global existence. This condition
requires that at least one factor of each nonlinear term (at the quadratic level) to be one
of the “good” directions. Einstein’s equations, for example, do not satisfy this classical
null condition, which led to the introduction of the weak null condition in [14, 15]
as a possible sufficient condition for small data global existence. Further evidence
supporting this is given in [10].

Here we shall consider a coupled system of equations. One of the equations satisfies
the classical null condition, but the other does not. The intuition is that the equation
satisfying the null condition has a solution that decays faster, and when that is plugged
into the second equation, this additional decay allows for an argument to be closed.

We specifically will consider

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u = ∂t u∂tv − ∇u · ∇v,

�v = ∂tv∂t u,

(u(0, · ), ∂t u(0, · )) = (u(0), u(1)),

(v(0, · ), ∂tv(0, · )) = (v(0), v(1)).

(1.1)

For simplicity of exposition, we shall take the initial data to be compactly supported,
say within {|x | ≤ 2}.

In order to describe the “good” directions, we shall frequently orthogonally decom-
pose the (spatial) gradient into radial and angular portions:

∇ = x

r
∂r + �∇.

The directions that are tangent to the light cone are

�∂ = (∂t + ∂r , �∇).

By noting that

∂t u∂tv − ∇u · ∇v = (∂t + ∂r )u∂tv − ∂r u(∂t + ∂r )v − �∇u · �∇v,

we see that the equation for u satisfies the null condition. The equation for v, however,
does not. Nevertheless, we shall prove that solutions to (1.1) with sufficiently small
initial data exist globally.

Our main theorem is the following statement of global existence.



On a system of weakly null semilinear wave equations Page 3 of 23   125 

Theorem 1.1 Suppose that u( j), v( j) ∈ C∞
c (R3). Then there is a N ∈ N sufficiently

large and ε0 > 0 sufficiently small so that if

∑

|α|≤N+1

‖∂α
x u(0)‖L2+

∑

|α|≤N+1

‖∂α
x v(0)‖L2+

∑

|α|≤N

‖∂α
x u(1)‖L2+

∑

|α|≤N

‖∂α
x v(1)‖L2≤ε

(1.2)

with ε ≤ ε0, then (1.1) has a unique global solution (u, v) ∈ (C∞([0,∞) × R
3))2.

The methods that we employ are partly inspired by [9] where almost global exis-
tence was established for equations without a null condition by pairing a local energy
estimate with a weighted Sobolev estimate that provides decay in |x | rather the t . The
latter does not require the use of any time dependent vector fields, which was instru-
mental in adapting the method of invariant vector fields to, e.g., exterior domains.
The paper [3] developed the r p-weighted local energy estimate. In this variant of the
local energy estimate, the additional decay for the “good” derivatives manifests itself
as much improved weights. In [4], an analog of [9] was established using these r p-
weighted estimates in order to show global existence for wave equations with the null
condition.

In [17], the r p-weighted multiplier of [3] was combined with a “ghost weight” as
in [1]. The resulting estimate allowed for additional improvements on the weight of
(∂t+∂r )u near the light cone. Thiswas then combinedwith the space-timeKlainerman-
Sobolev estimates of [20] in order to establish long-time existence for systems of
wave equations where the nonlinearity is allowed to depend on the solution not just its
derivative. We rely strongly upon these ideas. A further modification of the (∂t − ∂r )

component of the multiplier for typical local energy estimates is introduced here. This
modification, in particular, while requiring a faster decaying weight also provides a
more rapidly decaying weight on the forcing term.

1.1 Notation

Here we fix some notation that will be used throughout the paper. We let

� = x × ∇, S = t∂t + r∂r , Z = (∂t ,∇,�, S)

denote the admissible vector fields. We will use the shorthand

|Z≤Nu| =
∑

|μ|≤N

|Zμu|, |∂≤Nu| =
∑

|μ|≤N

|∂μu|.

A key property of the vector fields Z is that they all preserve solutions to the homo-
geneous wave equation since

[�, ∂] = [�,�] = 0, [�, S] = 2�.
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It will also be important to notice that

[Z , ∂] ∈ span(∂), |[Z , �∂]u| ≤ |Zu|
r

+ |�∂u|. (1.3)

In the proof of local energy estimates, we will frequently use that

[∇, ∂r ] = [�∇, ∂r ] = 1

r
�∇. (1.4)

We, moveover, note that

�∇ = − x

r2
× �, |�∇u| ≤ 1

r
|Zu|. (1.5)

We will often decompose R
3 into (inhomogeneous) dyadic regions. To that end,

let

AR = {R ≤ 〈x〉 ≤ 2R}, ÃR =
{
7

8
R ≤ 〈x〉 ≤ 17

8
R

}

.

Similarly, we set

XU =
{
(t, x) ∈ R+ × R

3 : U ≤ 〈t − r〉 ≤ 2U
}

,

with X̃U denoting a similar enlargement.
We shall use a finer refinement, as in [20], when necessary. Because of our assump-

tion that the initial data are supported in {|x | ≤ 2} and because of the finite speed of
propagation, it will suffice to examine C = {r ≤ t + 2}. We then consider a dyadic
strip

Cτ =
{
(t, x) ∈ R+ × R

3 : τ ≤ t ≤ 2τ, r ≤ t + 2
}

.

Away from the light cone t = |x |, we further decompose into dyadic regions in the
r variable:

CR=1
τ = Cτ ∩ {r ≤ 2}, CR

τ = Cτ ∩ {R ≤ r ≤ 2R} when 1 < R ≤ τ/4.

We additionally set

C̃ R=1
τ = C ∩

{
7

8
τ ≤ t ≤ 17

8
τ, r ≤ 17

8

}

,

C̃ R
τ = C ∩

{
7

8
τ ≤ t ≤ 17

8
τ,

7

8
R ≤ r ≤ 17

8
R

}

when 1 < R ≤ τ/4
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to denote slight enlargements, whichwill accommodate the tails of the cutoff functions
that are used to localize in the sequel. The key property is that

〈r〉 ≈ R, t − r ≈ τ on CR
τ , C̃ R

τ with τ ≥ 4 and 1 ≤ R ≤ τ/4.

In the vicinity of the light cone, we instead dyadically decompose in t − |x |. To
this end, let

CU=1
τ = Cτ ∩ {|t − r | ≤ 2}, CU

τ = Cτ ∩ {U ≤ t − r ≤ 2U } when 1 < U ≤ τ/4.

As above, we denote a slight enlargement on both scales by

C̃U=1
τ = C ∩

{
7

8
τ ≤ t ≤ 17

8
τ, |t − r | ≤ 17

8

}

,

and

C̃U
τ = C ∩

{
7

8
τ ≤ t ≤ 17

8
τ,

7

8
U ≤ t − r ≤ 17

8
U

}

when 1 < U ≤ τ/4.

These choices give

r ≈ τ, 〈t − r〉 ≈ U on CU
τ , C̃U

τ with τ ≥ 4 and 1 ≤ U ≤ τ/4.

With these notations in place, we have

Cτ =
⎛

⎝
⋃

1≤R≤τ/4

CR
τ

⎞

⎠ ∪
⎛

⎝
⋃

1≤U≤τ/4

CU
τ

⎞

⎠ ∪ Cτ/2
τ

where

Cτ/2
τ = Cτ ∩ {t − r ≥ τ/2} ∩ {r ≥ τ/2}.

On Cτ/2
τ , we have r ≈ τ and t − r ≈ τ . We may regard this region as either a CR

τ or
a CU

τ region (Fig. 1).

On occasion, we shall use ˜̃CR

τ ,
˜̃CU

τ to denote an enlargement of C̃ R
τ , C̃U

τ respec-
tively. In the sequel, it will be understood that τ, R,U always run over dyadic values.

In order to localize to such regions,wefix the followingnotation for cutoff functions.
Let χ be a smooth, nonnegative function so that χ(z) ≡ 1 for z ≥ 1 and χ(z) ≡ 0 for
z ≤ 7/8. We also set

β(z) = χ(z) − χ

(

z − 9

8

)

so that β(z) ≡ 1 for 1 ≤ z ≤ 2 and β(z) ≡ 0 when z /∈ [7/8, 17/8].
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Fig. 1 The decomposition of Cτ into CR
τ and CU

τ regions

We will frequently use the mixed norm notation

‖u‖p
L pLq =

∫ ∞

0
‖u(t, · )‖p

Lq (R3)
dt,

with the obvious alteration when p = ∞. Unless specified, the domain of all mixed
norms of this type is R+ × R

3. We also fix the following local energy norms, which
will be discussed more in the next section:

‖u‖LE = sup
R≥1

R− 1
2 ‖u‖L2L2(R+×AR), ‖u‖LE1 = ‖(∂u, u/r)‖LE .

2 Local energy estimates

The integrated local energy estimate

‖u‖2LE1 + ‖∂u‖2L∞L2 � ‖∂u(0, · )‖2L2 +
∫ ∞

0

∫

|�u|
(

|∂u| + |u|
r

)

dx dt (2.1)
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is frequently proved by pairing the equation �u with a multiplier of the form
∂t + f (r)∂r + f (r)

r u, integrating over a space-time slab, and integrating by parts.
The function f (r) needs to be C2, bounded, non-negative, increasing, and satisfy
−	( f (r)/r) ≥ 0, which the function f (r) = r/(r + R) appropriately satisfies. See
[22], [18, 19]. We may rewrite this multiplier as

∂t + r

r + R
∂r + 1

r + R
= R/2

r + R

(

∂t − ∂r − 1

r

)

+ r + (R/2)

r + R

(

∂t + ∂r + 1

r

)

,

(2.2)

which has the property that the coefficient of ∂t −∂r − 1
r is nonnegative and decreasing

in r , while the coefficient of ∂t + ∂r + 1
r is nonnegative and increasing. While there

are other requirements, this is the key observation to allow for generalizations of the
multiplier. In particular, we shall later consider

(1 + r)−δ

(

∂t − ∂r − 1

r

)

+ (1 + r)pe−σU (t−r)
(

∂t + ∂r + 1

r

)

.

Here σU (z) = z/(U + |z|), δ > 0, and 0 < p < 2.

Multipliers of the form r p
(
∂t + ∂r + 1

r

)
appeared previously in [3] and e−σ(t−r)∂t

in [1]. The combination of the two as reflected above is originally from [17]. The
change in multiplier on ∂t − ∂r − 1

r provides an additional degree of decay on the
forcing term that helps to close the nonlinear arguments in the sequel.

We first record a corollary of (2.1).

Proposition 2.1 Suppose u ∈ C2(R+ × R
3) and for all t ∈ R+, |∂≤1u(t, x)| → 0 as

|x | → ∞. Then

‖u‖LE1 + ‖∂u‖L∞L2 � ‖∂u(0, · )‖L2 +
∫ ∞

0
‖�u(t, · )‖L2 dt . (2.3)

The proposition follows immediately from (2.1) upon applying the Schwarz
inequality to see that

∫ ∞

0

∫

|�u|
(

|∂u| + |u|
r

)

dx dt ≤
(
‖∂u‖L∞L2 + ‖r−1u‖L∞L2

) ∫ ∞

0
‖�u(t, · )‖L2 dt .

A Hardy inequality gives

‖r−1u‖L2 � ‖∂r u‖L2 ,

which permits the first factor above to be bootstrapped.
We will now discuss the mixed r p-weighted and ghost weighted estimates of [17],

where the former is motivated by [3] and the latter by [1]. To begin, we look at a
variant of the Hardy inequality that holds in the space-time norms and yields a “good”
derivative. This, in essence, previously appeared in [17].
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Lemma 2.2 Fix 0 < p < 2. Suppose u ∈ C2(R+ × R
3) and for every t ∈ R+,

r
p
2 |u(t, x)| → 0 as |x | → ∞. Then,

‖〈r〉 p−1
2 r−1u‖L2L2 + ‖〈r〉 p−1

2 r− 1
2 u‖L∞L2 � ‖〈r〉 p−1

2 r− 1
2 u(0, · )‖L2

+‖〈r〉 p−1
2 r−1(∂t + ∂r )(ru)‖L2L2 . (2.4)

Proof We write
∫ T

0

∫
(1 + r)p−1

r2
u2 dx dt= −

∫ T

0

∫

S2

∫ ∞
0

(1 + r)p−1
[
(∂t + ∂r )(r

−1)
]
(ru)2 dr dω dt .

form on S
2. Integration by parts gives that this is

= −
∫

(1 + r)p−1

r
u2(T , x) dx +

∫
(1 + r)p−1

r
u2(0, x) dx

+(p − 1)
∫ T

0

∫
(1 + r)p−2

r
u2 dx dt + 2

∫ T

0

∫
(1 + r)p−1

r2
u(∂t + ∂r )(ru) dx dt .

Using that 1
1+r ≤ 1

r in the third term and applying the Schwarz inequality to the last
term then shows that

(1 − |p − 1|)
∫ T

0

∫
(1+r)p−1

r2
u2 dx dt+

∫
(1+r)p−1

r
u2(T , x) dx≤

∫
(1+r)p−1

r
u2(0, x) dx

+2

(∫ T

0

∫
(1 + r)p−1

r2
u2 dx dt

) 1
2
(∫ T

0

∫

(1 + r)p−1
(
r−1(∂t + ∂r )(ru)

)2
dx dt

) 1
2

.

Bootstrapping the first factor of the last term and taking a supremum over T then
yields (2.4). ��

We next record what, in essence, is the main new estimate of [17].

Proposition 2.3 Fix 0 < p < 2. If u ∈ C2(R+ × R
3) and r

p+2
2 |∂≤1u(t, x)| → 0 as

|x | → ∞, then

‖〈r〉p(∂t + ∂r )u‖L∞L2 + ‖〈r〉p �∇u‖L∞L2 + ‖〈r〉 p−1
2 r− 1

2 u‖L∞L2

+‖〈r〉 p−1
2 (∂t + ∂r )u‖L2L2 + ‖〈r〉 p

2 r− 1
2 �∇u‖L2L2 + ‖〈r〉 p−1

2 r−1u‖L2L2

+ sup
U≥1

U− 1
2 ‖〈r〉 p

2 r−1(∂t + ∂r )(ru)‖L2L2(XU )

� ‖〈r〉 p−1
2 r− 1

2 u(0, · )‖L2 + ‖〈r〉 p
2 (∂t + ∂r )u(0, · )‖L2 + ‖〈r〉 p

2 �∇u(0, · )‖L2

+
⎛

⎝
∑

τ

∑

R≤τ/4

‖〈r〉 p+1
2 �u‖2L2L2(CR

τ )

⎞

⎠

1
2

+
∑

U

⎛

⎝
∑

τ≥4U

U‖〈r〉 p
2 �u‖2L2L2(CU

τ )

⎞

⎠

1
2

.

(2.5)
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Proof Noting that

�u = r−1
(
∂2t − ∂2r − �∇ · �∇

)
(ru),

(

∂t + ∂r + 1

r

)

u = r−1 (∂t + ∂r ) (ru),

(2.6)

we consider

∫ T

0

∫

(1 + r)pe−σU (t−r)�u

(

∂t + ∂r + 1

r

)

u dx dt

=
∫ T

0

∫

S2

∫ ∞

0
(1 + r)pe−σU (t−r)

(
∂2t − ∂2r − �∇ · �∇

)
(ru) (∂t + ∂r ) (ru) dr dω dt

for 0 < p < 2, which, using (1.4), is equivalent to

1

2

∫ T

0

∫

S2

∫ ∞

0
(1 + r)pe−σU (t−r) (∂t − ∂r ) [(∂t + ∂r ) (ru)]2 dr dω dt

+1

2

∫ T

0

∫

S2

∫ ∞

0
(1 + r)pe−σU (t−r) (∂t + ∂r ) |�∇(ru)|2 dr dω dt

+
∫ T

0

∫

S2

∫ ∞

0

(1 + r)p

r
e−σU (t−r)|�∇(ru)|2 dr dω dt .

Subsequent integrations by parts then give

∫ T

0

∫

(1 + r)pe−σU (t−r)�u

(

∂t + ∂r + 1

r

)

u dx dt

= 1

2

∫

S2

∫ ∞

0
(1 + r)pe−σU (t−r)

{
[(∂t + ∂r ) (ru)]2 + |�∇(ru)|2

}
dr dω

∣
∣
∣
T

t=0

+1

2

∫ T

0

∫

S2
e−σU (t)u2(t, 0) dω dt

+ p

2

∫ T

0

∫

S2

∫ ∞

0
(1 + r)p−1e−σU (t−r) [(∂t + ∂r ) (ru)]2 dr dω dt

+
∫ T

0

∫

S2

∫ ∞

0
(1 + r)pσ ′

U (t − r)e−σU (t−r) [(∂t + ∂r ) (ru)]2 dr dω dt

+
(
1 − p

2

) ∫ T

0

∫

S2

∫ ∞

0

(1 + r)p

r
e−σU (t−r)|�∇(ru)|2 dr dω dt

+ p

2

∫ T

0

∫

S2

∫ ∞

0

(1 + r)p−1

r
e−σU (t−r)|�∇(ru)|2 dr dω dt . (2.7)

Rearranging the terms, noting that

σ ′
U (t − r) � 1

〈t − r〉 , on XU ,
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and taking a supremum over T yields

‖〈r〉 p
2 r−1(∂t + ∂r )(ru)‖2L∞L2 + ‖〈r〉 p

2 �∇u‖2L∞L2 + ‖〈r〉 p−1
2 r−1(∂t + ∂r )(ru)‖2L2L2

+‖〈r〉 p
2 r− 1

2 �∇u‖2L2L2 + sup
U

‖〈r〉 p
2 〈t − r〉− 1

2 r−1(∂t + ∂r )(ru)‖2L2L2(XU )

� ‖〈r〉 p
2 r−1u(0, · )‖2L2 + ‖〈r〉 p

2 �∂u(0, · )‖2L2 +
∫ ∞
0

∫

〈r〉p|�u||r−1(∂t + ∂r )(ru)| dx dt .

By the Schwarz inequality, we may bound

∫ ∞
0

∫

〈r〉p |�u||r−1(∂t + ∂r )(ru)| dx dt

�

⎛

⎝
∑

τ

∑

R≤τ/4

‖〈r〉 p+1
2 �u‖2

L2L2(CR
τ )

⎞

⎠

1
2

‖〈r〉 p−1
2 r−1(∂t + ∂r )(ru)‖L2L2

+

⎧
⎪⎨

⎪⎩

∑

U

⎡

⎣
∑

τ≥4U

U‖〈r〉 p
2 �u‖2

L2L2(CU
τ )

⎤

⎦

1
2
⎫
⎪⎬

⎪⎭

(

sup
U

U− 1
2 ‖〈r〉 p

2 r−1(∂t + ∂r )(ru)‖L2L2(XU )

)

.(2.8)

The second factor of each term may be bootstrapped. Combining what results with
(2.4) completes the proof. ��

We next combine the previous proposition with a modification of the (∂t − ∂r )

portion of the multiplier in (2.2). While the new ∂t − ∂r terms are easily controlled
using the LE1 norm, the corresponding forcing term comes with an added factor of
decay, (1 + r)−δ , when compared to the right side of (2.1).

Theorem 2.4 Fix 0 < p < 2 and δ > 0. If u ∈ C2(R+×R
3) and r

p+2
2 |∂≤1u(t, x)| →

0 as |x | → ∞, then

‖〈r〉− δ
2 (∂t − ∂r )u‖L∞L2 + ‖〈r〉 p

2 (∂t + ∂r )u‖L∞L2 + ‖〈r〉 p
2 �∇u‖L∞L2

+‖〈r〉 p−1
2 r− 1

2 u‖L∞L2 + ‖〈r〉− 1+δ
2 (∂t − ∂r )u‖L2L2 + ‖〈r〉 p−1

2 (∂t + ∂r )u‖L2L2

+‖〈r〉 p−1
2 �∇u‖L2L2 + ‖〈r〉 p−1

2 r−1u‖L2L2

+ sup
U

U− 1
2 ‖〈r〉 p

2 r−1(∂t + ∂r )(ru)‖L2L2(XU ) � ‖〈r〉− δ
2 (∂t − ∂r )u(0, · )‖L2

+‖〈r〉 p
2 (∂t + ∂r )u(0, · )‖L2 + ‖〈r〉 p

2 �∇u(0, · )‖L2 + ‖〈r〉 p
2 r−1u(0, · )‖L2

+‖〈r〉 1−δ
2 �u‖L2L2 +

⎛

⎝
∑

τ

∑

R≤τ/4

‖〈r〉 1+p
2 �u‖2L2L2(CR

τ )

⎞

⎠

1
2

+
∑

U

⎛

⎝
∑

τ≥4U

U‖〈r〉 p
2 �u‖2L2L2(CU

τ )

⎞

⎠

1
2

. (2.9)
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Proof Using (2.6) and the related identity

(

∂t − ∂r − 1

r

)

u = r−1 (∂t − ∂r ) (ru),

we begin by considering

∫ T

0

∫

(1 + r)−δ�u

(

∂t − ∂r − 1

r

)

u dx dt

=
∫ T

0

∫

S2

∫ ∞

0
(1 + r)−δ

(
∂2t − ∂2r − �∇ · �∇

)
(ru) (∂t − ∂r ) (ru) dr dω dt

with δ > 0. Integrating by parts and using (1.4), this is

= 1

2

∫ T

0

∫

S2

∫ ∞

0
(1 + r)−δ (∂t + ∂r ) [(∂t − ∂r ) (ru)]2 dr dω dt

−
∫ T

0

∫

S2

∫ ∞

0

(1 + r)−δ

r
|�∇(ru)|2 dr dω dt

+1

2

∫ T

0

∫

S2

∫ ∞

0
(1 + r)−δ (∂t − ∂r ) |�∇(ru)|2 dr dω dt .

The Fundamental Theorem of Calculus and subsequent integrations by parts give

∫ T

0

∫

(1 + r)−δ�u

(

∂t − ∂r − 1

r

)

u dx dt

= 1

2

∫

S2

∫ ∞

0
(1 + r)−δ

{
[(∂t − ∂r ) (ru)]2 + |�∇(ru)|2

}
dr dω

∣
∣
∣
T

t=0

−1

2

∫ T

0

∫

S2
u2(t, 0) dω dt + δ

2

∫ T

0

∫

S2

∫ ∞

0
(1 + r)−1−δ [(∂t − ∂r ) (ru)]2 dr dω dt

−
∫ T

0

∫

S2

∫ ∞

0
(1 + r)−δ

(

r−1 + δ

2
(1 + r)−1

)

|�∇(ru)|2 dr dω dt .

(2.10)

We now consider a multiplier of the form

(1 + r)−δ

(

∂t − ∂r − 1

r

)

+ C(1 + r)pe−σU (t−r)
(

∂t + ∂r + 1

r

)

, C � 1,

by adding a large multiple of (2.7) to (2.10). Since σU is bounded independently of
U , for a sufficiently large C ,

C

2

∫ T

0

∫

S2
e−σU (t)u2(t, 0) dω dt − 1

2

∫ T

0

∫

S2
u2(t, 0) dω dt ≥ 0,
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and as such, this r = 0 boundary term may be dropped. The nonnegative contribution

1

2

∫

S2

∫ ∞

0
(1 + r)−δ|�∇(ru)(T , rω)|2 dr dω

may also be omitted, and since δ, p > 0, we can simplify by bounding

1

2

∫

S2

∫ ∞
0

(1 + r)−δ |�∇(ru)(0, rω)|2 dr dω ≤ 1

2

∫

S2

∫ ∞
0

(1 + r)p|�∇(ru)(0, rω)|2 dr dω.

What then results from this combination of (2.10) and (2.7) is

∥
∥
∥(1 + r)−

δ
2 r−1 (∂t − ∂r ) (ru)

∥
∥
∥
2

L∞L2

+
∥
∥
∥(1 + r)

p
2 r−1 (∂t + ∂r ) (ru)

∥
∥
∥
2

L∞L2
+
∥
∥
∥(1 + r)

p
2 �∇u

∥
∥
∥
2

L∞L2

+
∥
∥
∥(1 + r)−

1
2 − δ

2 r−1 (∂t − ∂r ) (ru)

∥
∥
∥
2

L2L2
+
∥
∥
∥(1 + r)

p−1
2 r−1 (∂t + ∂r ) (ru)

∥
∥
∥
2

L2L2

+
∥
∥
∥(1 + r)

p−1
2 �∇u

∥
∥
∥
2

L2L2

+ sup
U

U−1
∥
∥
∥(1 + r)

p
2 r−1 (∂t + ∂r ) (ru)

∥
∥
∥
2

L2L2(XU )

�
∥
∥
∥(1 + r)−

δ
2 r−1 (∂t − ∂r ) (ru)(0, · )

∥
∥
∥
2

L2
+
∥
∥
∥(1 + r)

p
2 r−1 (∂t + ∂r ) (ru)(0, · )

∥
∥
∥
2

L2

+
∥
∥
∥(1 + r)

p
2 �∇u(0, · )

∥
∥
∥
2

L2

+
∫ ∞

0

∫

|�u|
{

(1 + r)−δ

∣
∣
∣
∣

(

∂t − ∂r − 1

r

)

u

∣
∣
∣
∣+ (1 + r)p

∣
∣
∣
∣

(

∂t + ∂r + 1

r

)

u

∣
∣
∣
∣

}

dx dt .

(2.11)

We use (2.8) and the fact that the Schwarz inequality allows us to bound

∫ ∞

0

∫

|�u|(1 + r)−δ

∣
∣
∣
∣

(

∂t − ∂r − 1

r

)

u

∣
∣
∣
∣ dx dt

� ‖(1 + r)
1−δ
2 �u‖L2L2‖(1 + r)−

1+δ
2 r−1(∂t − ∂r )(ru)‖L2L2 .

Bootstrapping then gives

‖〈r〉− δ
2 r−1(∂t − ∂r )(ru)‖L∞L2 + ‖〈r〉 p

2 r−1(∂t + ∂r )(ru)‖L∞L2 + ‖〈r〉 p
2 �∇u‖L∞L2

+‖〈r〉− 1+δ
2 r−1(∂t − ∂r )(ru)‖L2L2 + ‖〈r〉 p−1

2 r−1(∂t + ∂r )(ru)‖L2L2

+‖〈r〉 p−1
2 �∇u‖L2L2

+ sup
U

U− 1
2 ‖〈r〉 p

2 r−1(∂t + ∂r )(ru)‖L2L2(XU ) � ‖〈r〉− δ
2 (∂t − ∂r )u(0, · )‖L2

+‖〈r〉 p
2 (∂t + ∂r )u(0, · )‖L2 + ‖〈r〉 p

2 �∇u(0, · )‖L2 + ‖〈r〉 p
2 r−1u(0, · )‖L2
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+‖〈r〉 1−δ
2 �u‖L2L2 +

⎛

⎝
∑

τ

∑

R≤τ/4

‖〈r〉 1+p
2 �u‖2L2L2(CR

τ )

⎞

⎠

1
2

+
∑

U

⎛

⎝
∑

τ≥4U

U‖〈r〉 p
2 �u‖2L2L2(CU

τ )

⎞

⎠

1
2

.

Pairing this with (2.4) then completes the proof. ��

3 Sobolev estimates

In this section, we collect our principal decay estimates, which are variants of the
Klainerman-Sobolev estimate [12].

On occasion, it will suffice to apply the following standard weighted Sobolev esti-
mate, which is also from [12] and follows by applying Sobolev embeddings in the r
and ω variables after localizing.

Lemma 3.1 For h ∈ C∞(R3) and R > 0,

‖h‖L∞(AR) � R−1‖Z≤2h‖L2( ÃR)
. (3.1)

Where afiner analysis is necessary,we shall use the space-timeKlainerman-Sobolev
estimates of [20, Lemma 3.8]. We record these in the following lemma.

Lemma 3.2 If τ ≥ 1, 1 ≤ R ≤ τ/2, and 1 ≤ U ≤ τ/4, then

‖w‖L∞L∞(CR
τ ) � 1

τ
1
2 R

3
2

‖Z≤2w‖L2L2(C̃ R
τ )

+ 1

τ
1
2 R

1
2

‖∂r Z≤2w‖L2L2(C̃ R
τ )

, (3.2)

‖w‖L∞L∞(CU
τ ) � 1

τ
3
2U

1
2

‖Z≤2w‖L2L2(C̃U
τ )

+ U
1
2

τ
3
2

‖∂r Z≤2w‖L2L2(C̃U
τ )

. (3.3)

We shall only tersely describe the proof since this result previously appeared in
[20]. If R = 1, (3.2) is an immediate consequence of standard Sobolev embeddings.
And if 1 < R � τ , then after localizing, we may apply Sobolev embeddings in (s, ω)

and the Fundamental Theorem of Calculus in ρ where t = es and r = es+ρ . This
gives that

β

(
es

τ

)

β

(
es+ρ

R

)

|w (es, es+ρω
) |

�
(∫ ∫ ∫ ∣

∣
∣
∣∂ρ

(

∂≤2
s,ω

[

β

(
es

τ

)

β

(
es+ρ

R

)

w(es, es+ρω)

])2∣∣
∣
∣ dρ ds dω

)1/2

.
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Relying on the observations that

∂s(w(es, es+ρω)) = (Sw)(es, es+ρω), |∂ω(w(es, es+ρω)| � |(�w)(es, es+ρω)|,
∂ρ(w(es, es+ρω)) = (r∂rw)(es, es+ρω),

upon changing variables in the integrals, we see that

‖w‖L∞L∞(CR
τ ) � 1

τ
1
2 R

3
2

‖Z≤2w‖L2L2(C̃ R
τ )

+ 1

τ
1
2 R

‖Z≤2w‖
1
2

L2L2(C̃ R
τ )

‖∂r Z≤2w‖
1
2

L2L2(C̃ R
τ )

. (3.4)

The estimate (3.2) is now an immediate consequence. Moreover, if R = τ/2, if we

replace w by χ
(
2(t−r)

τ

)
w and note that S

(
χ
(
2(t−r)

τ

))
= O(1), the estimate for

Cτ/2
τ also follows.
When U = 1, the bound (3.3) follows from (3.4). Otherwise, with t = es and

t − r = es+ρ , a similar application of Sobolev embeddings yields (3.3).
When the estimates of [20] are applied to ∂w, the decomposition pairs nicely with

2Sw = (t + r)(∂t + ∂r )w + (t − r)(∂t − ∂r )w, (3.5)

which will allow us to recover � to get additional decay out of the second derivative
terms. This represents space-time analogs of some estimates of [13]. See, also, [16]
where some similar analyses appeared previously.

Corollary 3.3 For τ ≥ 1 and 1 ≤ R ≤ τ/2, 1 ≤ U ≤ τ/4, we have

‖∂w‖L∞L∞(CR
τ ) � 1

τ
1
2 R

3
2

‖∂Z≤3w‖L2L2(C̃ R
τ )

+ 1

τ
1
2 R

1
2

‖�Z≤2w‖L2L2(C̃ R
τ )

, (3.6)

‖∂w‖L∞L∞(CU
τ ) � 1

U
1
2 τ

3
2

‖∂Z≤3w‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖�Z≤2w‖L2L2(C̃U
τ )

. (3.7)

Proof We apply (3.2) to see

‖∂w‖L∞L∞(CR
τ ) � 1

τ
1
2 R

3
2

‖∂Z≤2w‖L2L2(C̃ R
τ )

+ 1

τ
1
2 R

1
2

‖∂r∂Z≤2w‖L2L2(C̃ R
τ )

.(3.8)

We notice that

‖∂r �∇Z≤2w‖L2L2(C̃ R
τ )

� 1

R
‖∂Z≤3w‖L2L2(C̃ R

τ )
(3.9)

follows from (1.4) and (1.5). Moreover, by applying (3.5) with w replaced by (∂t −
∂r )Z≤2w and (∂t + ∂r )Z≤2w respectively, we obtain

‖(∂t − ∂r )
2Z≤2w‖L2L2(C̃ R

τ )
� 1

R
‖∂Z≤3w‖L2L2(C̃ R

τ )
+ ‖(∂2t − ∂2r )Z≤2w‖L2L2(C̃ R

τ )
,

(3.10)
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and

‖(∂t + ∂r )
2Z≤2w‖L2L2(C̃ R

τ )
� 1

R
‖∂Z≤3w‖L2L2(C̃ R

τ )
+ ‖(∂2t − ∂2r )Z≤2w‖L2L2(C̃ R

τ )
.

(3.11)

Observing that

|∂r∂Z≤2w| ≤ |∂r �∇Z≤2w| + |∂r (∂t − ∂r )Z
≤2w| + |∂r (∂t + ∂r )Z

≤2w|

and subsequently writing ∂r = 1
2 [(∂t + ∂r ) − (∂t − ∂r )] in the last two terms, we see

that

‖∂r∂Z≤2w‖L2L2(C̃ R
τ )

� ‖∂r �∇Z≤2w‖L2L2(C̃ R
τ )

+ ‖(∂t − ∂r )
2Z≤2w‖L2L2(C̃ R

τ )

+‖(∂t + ∂r )
2Z≤2w‖L2L2(C̃ R

τ )

+‖(∂2t − ∂2r )Z≤2w‖L2L2(C̃ R
τ )

. (3.12)

Using this in (3.8) and the estimating via (3.9), (3.10), and (3.11) gives

‖∂w‖L∞L∞(CR
τ ) � 1

τ
1
2 R

3
2

‖∂Z≤3w‖L2L2(C̃ R
τ )

+ 1

τ
1
2 R

1
2

‖(∂2t − ∂2r )Z≤2w‖L2L2(C̃ R
τ )

.

Relying upon

∂2t − ∂2r = � + 2

r
∂r + �∇ · �∇ (3.13)

and (1.5) yields (3.6).
For (3.7), we argue similarly. By (1.4) and (1.5) (applied to ∂r Z≤2w), we obtain

‖∂r �∇Z≤2w‖L2L2(C̃U
τ )

� 1

τ
‖∂Z≤3w‖L2L2(C̃U

τ )
.

And using (3.5) with w replaced by (∂t − ∂r )Z≤2w and (∂r + ∂r )Z≤2w respectively,
we see that

‖(∂t − ∂r )
2Z≤2w‖L2L2(C̃U

τ )
� 1

U
‖∂Z≤3w‖L2L2(C̃U

τ )
+ τ

U
‖(∂2t − ∂2r )Z≤2w‖L2L2(C̃U

τ )
,

‖(∂t + ∂r )
2Z≤2w‖L2L2(C̃U

τ )
� 1

τ
‖∂Z≤3w‖L2L2(C̃U

τ )
+ ‖(∂2t − ∂2r )Z≤2w‖L2L2(C̃U

τ )
.

Using these in (3.3) and the C̃U
τ analog of (3.12), in combination with (3.13) and (1.5)

as above, we see that

‖∂w‖L∞L∞(CU
τ ) � 1

U
1
2 τ

3
2

‖∂Z≤2w‖L2L2(C̃U
τ )

+ U
1
2

τ
3
2

‖∂r∂Z≤2w‖L2L2(C̃U
τ )
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� 1

U
1
2 τ

3
2

‖∂Z≤3w‖L2L2(C̃U
τ )

+ 1

U
1
2 τ

1
2

‖�Z≤2w‖L2L2(C̃U
τ )

,

which completes the proof. ��

4 Global existence

Here we provide the proof of Theorem 1.1. To do so, we set u0 ≡ 0, v0 ≡ 0 and
recursively define uk, vk to solve

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�uk = (∂t + ∂r )uk−1 ∂tvk−1 − ∂r uk−1(∂t + ∂r )vk−1 − �∇uk−1 · �∇vk−1,

�vk = ∂t uk−1 ∂tvk−1,

(uk(0, · ), ∂t uk(0, · )) = (u(0), u(1)),

(vk(0, · ), ∂tvk(0, · )) = (v(0), v(1)).

(4.1)

We will show that the sequences (uk) and (vk) converge. The limits yield the desired
solutions u, v to (1.1).

4.1 Boundedness

We fix 0 < p < 1, 0 < δ < min
(
p, 1− p

)
, and N large enough so that N

2 + 3 ≤ N .

We then set

Mk = ‖〈r〉 p−1
2 �∂Z≤Nuk‖L2L2 + ‖〈r〉 p−1

2 r−1Z≤Nuk‖L2L2 + ‖〈r〉 p−1
2 �∂Z≤Nvk‖L2L2

+‖〈r〉 p−1
2 r−1Z≤Nvk‖L2L2 + ‖Z≤Nuk‖LE1 + ‖∂Z≤Nuk‖L∞L2

+‖〈r〉− 1+δ
2 ∂Z≤Nvk‖L2L2 + ‖〈r〉− δ

2 ∂Z≤Nvk‖L∞L2

+ sup
τ

sup
R≤τ/2

(
τ

1
2 R‖∂Z≤ N

2 uk‖L∞L∞(CR
τ )

)

+
⎡

⎣
∑

τ

∑

R≤τ/2

(
τ

1
2 R1− δ

2 ‖∂Z≤ N
2 vk‖L∞L∞(CR

τ )

)2

⎤

⎦

1
2

+ sup
τ

sup
U≤τ/4

(
τU

1
2 ‖∂Z≤ N

2 uk‖L∞L∞(CU
τ )

)

+
⎡

⎣
∑

τ

∑

U≤τ/4

(
τ 1−

δ
2U

1
2 ‖∂Z≤ N

2 vk‖L∞L∞(CU
τ )

)2

⎤

⎦

1
2

. (4.2)

For any k ≥ 1, we shall show that

Mk ≤ C0ε + CM2
k−1 (4.3)
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for some fixed constantC0. Provided that ε > 0 is sufficiently small, a straightforward
induction argument then shows that

Mk ≤ 2C0ε (4.4)

for any k.
The product rule gives

|Z≤N�uk | � |∂Z≤ N
2 uk−1||∂Z≤Nvk−1| + |∂Z≤Nuk−1||∂Z≤ N

2 vk−1|. (4.5)

Hence,

‖〈r〉 p+1
2 �Z≤Nuk‖L2L2(CR

τ )

� τ− 1
2 R

p+δ
2

(
τ

1
2 R‖∂Z≤ N

2 uk−1‖L∞L∞(CR
τ )

)
‖〈r〉− 1+δ

2 ∂Z≤Nvk−1‖L2L2(CR
τ )

+τ− 1
2 R

p+δ
2

(
τ

1
2 R1− δ

2 ‖∂Z≤ N
2 vk−1‖L∞L∞(CR

τ )

)
‖Z≤Nuk−1‖LE1 , (4.6)

and

U
1
2 ‖〈r〉 p

2 �Z≤Nuk‖L2L2(CU
τ )

� τ
p−1+δ

2

(
U

1
2 τ‖∂Z≤ N

2 uk−1‖L∞L∞(CU
τ )

)
‖〈r〉− 1+δ

2 ∂Z≤Nvk−1‖L2L2(CU
τ )

+τ
p−1+δ

2

(
U

1
2 τ 1−

δ
2 ‖∂Z≤ N

2 vk−1‖L∞L∞(CU
τ )

)
‖Z≤Nuk−1‖LE1 . (4.7)

From this, it follows that
⎛

⎝
∑

τ

∑

R≤τ/2

‖〈r〉 1+p
2 �Z≤Nuk‖2L2L2(CR

τ )

⎞

⎠

1
2

+
∑

U

⎛

⎝
∑

τ≥4U

U‖〈r〉 p
2 �Z≤Nuk‖2L2L2(CU

τ )

⎞

⎠

1
2

� M2
k−1. (4.8)

By (2.5) and (1.2), along with a Hardy inequality, we get

‖〈r〉 p−1
2 �∂Z≤Nuk‖L2L2 + ‖〈r〉 p−1

2 r−1Z≤Nuk‖L2L2 � ε + M2
k−1. (4.9)

As the above argument does not rely on the null structure of �uk and we also have

|Z≤N�vk | � |∂Z≤ N
2 uk−1||∂Z≤Nvk−1| + |∂Z≤Nuk−1||∂Z≤ N

2 vk−1|, (4.10)
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the same arguments show that

⎛

⎝
∑

τ

∑

R≤τ/2

‖〈r〉 1+p
2 �Z≤Nvk‖2L2L2(CR

τ )

⎞

⎠

1
2

+
∑

U

⎛

⎝
∑

τ≥4U

U‖〈r〉 p
2 �Z≤Nvk‖2L2L2(CU

τ )

⎞

⎠

1
2

� M2
k−1, (4.11)

which we shall use later.
It is in the process of bounding ‖Z≤Nuk‖LE1 and ‖∂Z≤Nuk‖L∞L2 that wewill need

the null condition. A finer alternative to (4.5) that takes care with the good directions
is

|�Z≤Nuk | � |Z≤ N
2 ∂vk−1||Z≤N �∂uk−1| + |Z≤ N

2 �∂uk−1||Z≤N ∂vk−1|
+|Z≤ N

2 ∂uk−1||Z≤N �∂vk−1| + |Z≤ N
2 �∂vk−1||Z≤N ∂uk−1|. (4.12)

We need to consider

∫ ∞

0
‖Z≤N�uk(s, · )‖L2 ds ≤

∑

j≥0

∫ ∞

0
‖Z≤N�uk(s, · )‖L2(A2 j )

ds.

To each lower order term in (4.12), we apply (3.1) to see that this is

�
∑

j≥0

∫ ∞

0
2− p−δ

2 j‖〈r〉 p−1
2 Z≤N �∂uk−1(s, · )‖L2(A2 j )

‖〈r〉− 1+δ
2 Z≤ N

2 +2∂vk−1(s, · )‖L2( Ã2 j )
ds

+
∑

j≥0

∫ ∞

0
2− p−δ

2 j‖〈r〉 p−1
2 Z≤ N

2 +2 �∂uk−1(s, · )

‖L2( Ã2 j )
‖〈r〉− 1+δ

2 Z≤N ∂vk−1(s, · )‖L2(A2 j )
ds

+
∑

j≥0

∫ ∞

0
2− p

2 j‖〈r〉− 1
2 Z≤ N

2 +2∂uk−1(s, · )

‖L2( Ã2 j )
‖〈r〉 p−1

2 Z≤N �∂vk−1(s, · )‖L2(A2 j )
ds

+
∑

j≥0

∫ ∞

0
2− p

2 j‖〈r〉− 1
2 Z≤N ∂uk−1(s, · )

‖L2(A2 j )
‖〈r〉 p−1

2 Z≤ N
2 +2 �∂vk−1(s, · )‖L2( Ã2 j )

ds.
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By the Schwarz inequality and (1.3), this is

�
(
‖〈r〉 p−1

2 �∂Z≤Nuk−1‖L2L2 + ‖〈r〉 p−1
2 r−1Z≤Nuk−1‖L2L2

)

×‖〈r〉− 1+δ
2 ∂Z≤Nvk−1‖L2L2

+‖Z≤Nuk−1‖LE1

(
‖〈r〉 p−1

2 �∂Z≤Nvk−1‖L2L2 + ‖〈r〉 p−1
2 r−1Z≤Nvk−1‖L2L2

)

provided N
2 + 2 ≤ N , which is clearly O(M2

k−1) as desired. Hence, due to (2.3) and
(1.2), we have shown

‖Z≤Nuk‖LE1 + ‖∂Z≤Nuk‖L∞L2 � ε + M2
k−1. (4.13)

In order to address the vk terms, we next consider

‖〈r〉 1−δ
2 Z≤N�vk‖L2L2 .

To the lower order factors in (4.10) we apply (3.1) to see that this is

� ‖∂Z≤ N
2 +2uk−1‖L∞L2‖〈r〉− 1+δ

2 ∂Z≤Nvk−1‖L2L2

+‖∂Z≤Nuk−1‖L∞L2‖〈r〉− 1+δ
2 ∂Z≤ N

2 +2vk−1‖L2L2 .

Since N
2 + 2 ≤ N , this isO(M2

k−1). When combined with (1.2), (2.9), (4.11), and the
observation that

‖〈r〉− δ
2 ∂Z≤Nvk‖L∞L2 � ‖〈r〉− δ

2 (∂t − ∂r )Z
≤Nvk‖L∞L2 + ‖〈r〉 p

2 �∂Z≤Nvk‖L∞L2 ,

this gives

‖〈r〉 p−1
2 �∂Z≤Nvk‖L2L2 + ‖〈r〉 p−1

2 r−1Z≤Nvk‖L2L2 + ‖〈r〉− 1+δ
2 ∂Z≤Nvk‖L2L2

+‖〈r〉− δ
2 ∂Z≤Nvk‖L∞L2 � ε + M2

k−1. (4.14)

In order to show (4.3), it remains to bound the L∞L∞ terms in (4.2). Applying
(3.1) to each lower order piece in (4.12), we see that

R
1
2 ‖Z≤N�uk‖L2L2(C̃ R

τ )
� R

δ−p
2 ‖〈r〉− δ

2 Z≤ N
2 +2∂vk−1‖L∞L2‖〈r〉 p−1

2 Z≤N �∂uk−1‖L2L2

+R
δ−p
2 ‖〈r〉 p−1

2 Z≤ N
2 +2 �∂uk−1‖L2L2‖〈r〉− δ

2 Z≤N ∂vk−1‖L∞L2

+R− p
2 ‖Z≤ N

2 +2∂uk−1‖L∞L2‖〈r〉 p−1
2 Z≤N �∂vk−1‖L2L2

+R− p
2 ‖Z≤N ∂uk−1‖L∞L2‖〈r〉 p−1

2 Z≤ N
2 +2 �∂vk−1‖L2L2 .

And thus, by (3.6) and the facts that N
2 + 2 ≤ N and 0 < δ < p,
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τ
1
2 R‖∂Z≤ N

2 uk‖L∞L∞(CR
τ ) � ‖〈r〉− 1

2 ∂Z≤ N
2 +3uk‖L2L2(C̃ R

τ )

+‖〈r〉− δ
2 Z≤N ∂vk−1‖L∞L2‖〈r〉 p−1

2 Z≤N �∂uk−1‖L2L2

+‖Z≤N ∂uk−1‖L∞L2‖〈r〉 p−1
2 Z≤N �∂vk−1‖L2L2

for 1 ≤ R ≤ τ/2. When this is combined with (1.3) and (4.13) it yields that

sup
τ

sup
R≤τ/2

(
τ

1
2 R‖∂Z≤ N

2 uk‖L∞L∞(CR
τ )

)
� ε + M2

k−1. (4.15)

Similarly using (3.1) and (1.3) in (4.10) instead gives

‖Z≤N�vk‖L2L2(C̃ R
τ )

� R− 1−δ
2 ‖∂Z≤ N

2 +2uk−1‖L∞L2‖〈r〉− 1+δ
2 ∂Z≤Nvk−1‖L2L2(C̃ R

τ )

+R− 1−δ
2 ‖〈r〉− 1+δ

2 ∂Z≤ N
2 +2vk−1‖

L2L2(
˜̃CR

τ )
‖∂Z≤Nuk−1‖L∞L2 .

When combined with (3.6), this yields

τ
1
2 R1− δ

2 ‖∂Z≤ N
2 vk‖L∞L∞(CR

τ ) � ‖〈r〉− 1+δ
2 Z≤ N

2 +3vk‖L2L2(C̃ R
τ )

+‖∂Z≤ N
2 +2uk−1‖L∞L2‖〈r〉− 1+δ

2 ∂Z≤Nvk−1‖L2L2(C̃ R
τ )

+‖〈r〉− 1+δ
2 ∂Z≤ N

2 +2vk−1‖
L2L2(

˜̃CR

τ )
‖∂Z≤Nuk−1‖L∞L2 ,

which upon pairing with (4.14) gives

⎡

⎣
∑

τ

∑

R≤τ/4

(
R

3−δ
2 ‖∂Z≤ N

2 vk‖L∞L∞(CR
τ )

)2

⎤

⎦

1
2

� ε + M2
k−1. (4.16)

Using (3.7) in place of (3.6), these same arguments show

U
1
2 τ‖∂Z≤ N

2 uk‖L∞L∞(CU
τ ) � ‖〈r〉− 1

2 Z≤ N
2 +3uk‖L2L2(C̃U

τ )

+‖〈r〉− δ
2 Z≤N ∂vk−1‖L∞L2‖〈r〉 p−1

2 Z≤N �∂uk−1‖L2L2

+‖Z≤N ∂uk−1‖L∞L2‖〈r〉 p−1
2 Z≤N �∂vk−1‖L2L2 ,

and

U
1
2 τ 1−

δ
2 ‖∂Z≤ N

2 vk‖L∞L∞(CU
τ ) � ‖〈r〉− 1+δ

2 Z≤ N
2 +3vk‖L2L2(C̃U

τ )

+‖∂Z N
2 +2uk−1‖L∞L2‖〈r〉− 1+δ

2 ∂Z≤Nvk−1‖L2L2(C̃U
τ )

+‖〈r〉− 1+δ
2 ∂Z≤ N

2 +2vk−1‖
L2L2(

˜̃CU

τ )
‖∂Z≤Nuk−1‖L∞L2 .
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When these are combined with (4.13) and (4.14) respectively, we obtain

sup
τ

sup
U≤τ/4

(
τU

1
2 ‖∂Z≤ N

2 uk‖L∞L∞(CU
τ )

)

+
⎡

⎣
∑

τ

∑

U≤τ/4

(
τ 1−

δ
2U

1
2 ‖∂Z≤ N

2 vk‖L∞L∞(CU
τ )

)2

⎤

⎦

1
2

� ε + M2
k−1. (4.17)

The combination of (4.9), (4.13), (4.14), (4.15), (4.16), and (4.17) prove (4.3) and,
hence, (4.4) as desired.

4.2 Convergence

It remains to show that the sequence (uk) and (vk) converge. We set

Ak = ‖〈r〉 p−1
2 �∂Z≤N (uk − uk−1)‖L2L2 + ‖〈r〉 p−1

2 r−1Z≤N (uk − uk−1)‖L2L2

+‖〈r〉 p−1
2 �∂Z≤N (vk − vk−1)‖L2L2

+‖〈r〉 p−1
2 r−1Z≤N (vk − vk−1)‖L2L2 + ‖Z≤N (uk − uk−1)‖LE1

+‖∂Z≤N (uk − uk−1)‖L∞L2

+‖〈r〉− 1+δ
2 ∂Z≤N (vk − vk−1)‖L2L2

+ sup
τ

sup
R≤τ/2

(
τ

1
2 R‖∂Z≤ N

2 (uk − uk−1)‖L∞L∞(CR
τ )

)

+
⎡

⎣
∑

τ

∑

R≤τ/2

(
R

3−δ
2 ‖∂Z≤ N

2 (vk − vk−1)‖L∞L∞(CR
τ )

)2

⎤

⎦

1
2

+ sup
τ

sup
U≤τ/4

(
τU

1
2 ‖∂Z≤ N

2 (uk − uk−1)‖L∞L∞(CU
τ )

)

+
⎡

⎣
∑

τ

∑

U≤τ/4

(
τ 1−

δ
2U

1
2 ‖∂Z≤ N

2 (vk − vk−1)‖L∞L∞(CU
τ )

)2

⎤

⎦

1
2

. (4.18)

We seek to show that

Ak ≤ 1

2
Ak−1, (4.19)

which implies that the sequences are Cauchy and thus convergent.
We note that
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|Z≤N�(uk − uk−1)| � |∂Z≤ N
2 (uk−1 − uk−2)||∂Z≤Nvk−1|

+|∂Z≤N (uk−1 − uk−2)||∂Z≤ N
2 vk−1|

+|∂Z≤ N
2 uk−2||∂Z≤N (vk−1 − vk−2)| + |∂Z≤Nuk−2||∂Z≤ N

2 (vk−1 − vk−2)|,
(4.20)

|Z≤N�(vk − vk−1)| � |∂Z≤ N
2 (uk−1 − uk−2)||∂Z≤Nvk−1|

+|∂Z≤N (uk−1 − uk−2)||∂Z≤ N
2 vk−1|

+|∂Z≤ N
2 uk−2||∂Z≤N (vk−1 − vk−2)| + |∂Z≤Nuk−2||∂Z≤ N

2 (vk−1 − vk−2)|,
(4.21)

and

|�Z≤N (uk − uk−1)| � |Z≤ N
2 ∂vk−1||Z≤N �∂(uk−1 − uk−2)|

+|Z≤N ∂vk−1||Z≤ N
2 �∂(uk−1 − uk−2)|

+|Z≤ N
2 �∂uk−2||Z≤N ∂(vk−1 − vk−2)| + |Z≤N �∂uk−2||Z≤ N

2 ∂(vk−1 − vk−2)|
+|Z≤ N

2 �∂vk−1||Z≤N ∂(uk−1 − uk−2)| + |Z≤N �∂vk−1||Z≤ N
2 ∂(uk−1 − uk−2)|

+|Z≤ N
2 �∂(vk−1 − vk−2)||Z≤N ∂uk−2| + |Z≤N �∂(vk−1 − vk−2)||Z≤ N

2 ∂uk−2|,
(4.22)

which will be used in place of (4.5), (4.10), and (4.12) respectively. Arguing as in the
proof of (4.3) then shows that

Ak � (Mk−1 + Mk−2)Ak−1.

Provided that ε is sufficiently small, an application of (4.4) immediately yields (4.19)
and completes the proof.

We end with a brief remark about the asymptotics of the solution. The solution u
is also bounded in the norms given by (4.2). Indeed, by examining the last two terms,
one can immediately observe that u as more rapid asymptotic decay O(t−1) than the

component v, which instead is O(t−1+ δ
2 ).
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